欢迎来到天天文库
浏览记录
ID:48720654
大小:229.81 KB
页数:15页
时间:2020-01-20
《数学人教版八年级上册角边角、角角边判定三角形全等.2 第3课时 “角边角”、“角角边”.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.2三角形全等的判定第十二章全等三角形导入新课讲授新课当堂练习课堂小结第3课时“角边角”、“角角边”情境引入学习目标1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.导入新课如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?情境引入321讲授新课三角形全等的判定(“角边角”定理)一作图探究先任意画出一个△ABC,再画一个
2、△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等).把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?ACBACBA′B′C′ED作法:(1)画A'B'=AB;(2)在A'B'的同旁画∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E相交于点C'.想一想:从中你能发现什么规律?知识要点“角边角”判定方法文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).几何语言:∠A=∠A′(已知),AB=A′B′(已知),∠B=∠B′(已知),
3、在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(ASA).ABCA′B′C′例1已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.∠ABC=∠DCB(已知),BC=CB(公共边),∠ACB=∠DBC(已知),证明:在△ABC和△DCB中,∴△ABC≌△DCB(ASA).ASA典例精析BCAD判定方法4:两角和它们的夹边对应相等两个三角形全等.例2如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:AD=AE.ABCDE分析:证明△ACD≌△ABE,就可以得出AD=AE.
4、证明:在△ACD和△ABE中,∠A=∠A(公共角),AC=AB(已知),∠C=∠B(已知),∴△ACD≌△ABE(ASA),∴AD=AE.当堂练习1.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.不全等,因为BC虽然是公共边,但不是对应边.ABCDABCDEF2.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件,才能使△ABC≌△DEF(写出一个即可).∠B=∠E或∠A=∠D或AC=DF(ASA)(AAS)(SAS)AB=DE可以吗?×AB∥DE3.已知:如图,
5、AB⊥BC,AD⊥DC,∠1=∠2,求证:AB=AD.ACDB12证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°.在△ABC和△ADC中,∠1=∠2(已知),∠B=∠D(已证),AC=AC(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.学以致用:如图,小明不慎将一块三角形模具打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?321答:带1去,因为有两角且夹边相等的两个三角形全等.能力提升:已知:如图,△ABC≌△A′B
6、′C′,AD、A′D′分别是△ABC和△A′B′C′的高.试说明AD=A′D′,并用一句话说出你的发现.ABCDA′B′C′D′解:因为△ABC≌△A′B′C′,所以AB=A'B'(全等三角形对应边相等),∠ABD=∠A'B'D'(全等三角形对应角相等).因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.在△ABD和△A'B'D'中,∠ADB=∠A'D'B'(已证),∠ABD=∠A'B'D'(已证),AB=AB(已证),所以△ABD≌△A'B'D'.所以AD=A'D'.ABCDA′B′C′D′全等
7、三角形对应边上的高也相等.课堂小结边角边角角边内容有两角及夹边对应相等的两个三角形全等(简写成“ASA”)应用为证明线段和角相等提供了新的证法注意注意“角角边”、“角边角”中两角与边的区别
此文档下载收益归作者所有