赵玉苗编高中数学排列与组合及概率好题集锦

赵玉苗编高中数学排列与组合及概率好题集锦

ID:38754261

大小:545.00 KB

页数:18页

时间:2019-06-18

赵玉苗编高中数学排列与组合及概率好题集锦_第1页
赵玉苗编高中数学排列与组合及概率好题集锦_第2页
赵玉苗编高中数学排列与组合及概率好题集锦_第3页
赵玉苗编高中数学排列与组合及概率好题集锦_第4页
赵玉苗编高中数学排列与组合及概率好题集锦_第5页
资源描述:

《赵玉苗编高中数学排列与组合及概率好题集锦》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、赵玉苗编高中数学排列与组合及概率好题集锦二〇一三年八月七日星期三一、选择题1.12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为(B)A.B.C.D.解析因为将12个组分成4个组的分法有种,而3个强队恰好被分在同一组分法有,故3个强队恰好被分在同一组的概率为。2.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为(C)A.8B.24C.48D.120.w【解析】本题主要考查排列组合知识以及分步计数原理知识.属于基础知识、基本运算的考查.2和4排在末位时,共有种排法,其余三位数从余下的四个数中任取三个有种排法,于是由分步计数原

2、理,符合题意的偶数共有(个).故选C.3.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为(B)A.324B.328C.360D.648【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识.属于基础知识、基本运算的考查.首先应考虑“0”是特殊元素,当0排在末位时,有(个),当0不排在末位时,有(个),于是由分类计数原理,得符合题意的偶数共有(个).故选B.4.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(C)(A)6种(B)12种(C)24种(D)30种解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种

3、数=36,再求出两人所选两门都相同和都不同的种数均为=6,故只恰好有1门相同的选法有24种。5.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(D)(A)150种(B)180种(C)300种(D)345种解:分两类(1)甲组中选出一名女生有种选法;(2)乙组中选出一名女生有种选法.故共有345种选法.选D6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为(C)【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序有

4、种,而甲乙被分在同一个班的有种,所以种数是7.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是(B)A.60B.48C.42D.36【解析】从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。8.甲、乙两人从4门课程中各选

5、修2门。则甲、乙所选的课程中至少有1门不相同的选法共有(C)A.6种B.12种C.30种D.36种解:用间接法即可.种.故选C9.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)(A)70种(B)80种(C)100种(D)140种【解析】直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种.10.从5名志愿者中选派4人在星期五、星期六、星期日参加公益

6、活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有(C)A.120种B.96种C.60种D.48种【解析】5人中选4人则有种,周五一人有种,周六两人则有,周日则有种,故共有××=60种,故选C11.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【B】A.14B.16C.20D.48解:由间接法得,故选B.12.甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(D)

7、(A)150种(B)180种(C)300种(D)345种解:由题共有,故选择D。13.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是(B)A.60B.48C.42D.36解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。