2021届高考数学(文)复习双测卷第二单元 函数概念与基本初等函数(A卷基础解析版).doc

2021届高考数学(文)复习双测卷第二单元 函数概念与基本初等函数(A卷基础解析版).doc

ID:58697706

大小:1.92 MB

页数:19页

时间:2020-10-05

2021届高考数学(文)复习双测卷第二单元 函数概念与基本初等函数(A卷基础解析版).doc_第1页
2021届高考数学(文)复习双测卷第二单元 函数概念与基本初等函数(A卷基础解析版).doc_第2页
2021届高考数学(文)复习双测卷第二单元 函数概念与基本初等函数(A卷基础解析版).doc_第3页
2021届高考数学(文)复习双测卷第二单元 函数概念与基本初等函数(A卷基础解析版).doc_第4页
2021届高考数学(文)复习双测卷第二单元 函数概念与基本初等函数(A卷基础解析版).doc_第5页
资源描述:

《2021届高考数学(文)复习双测卷第二单元 函数概念与基本初等函数(A卷基础解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二单元函数概念与基本初等函数A卷基础过关检测一、选择题:本题共12个小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2019·哈尔滨市第一中学校高三开学考试(文))已知的定义域为,则函数的定义域为()A.B.C.D.【答案】B【解析】试题分析:因为函数的定义域为,故函数有意义只需即可,解得,选B.2.(2020·重庆南开中学高三其他(文))下列函数中,值域是R且是奇函数的是()A.B.C.D.【答案】C【解析】A项中,的值域是,但不是奇函数;B项中,的值域是,是奇函数;C

2、项中,的值域是,且是奇函数;D项中,的值域是,不是奇函数.故选:C.3.(2020·河南省高三三模(文))已知定义域为R的函数的图象关于原点对称,且时,.当时,,则()A.B.C.12D.68【答案】A【解析】∵函数的图象关于原点对称∴依题意,,,故.故选:A.4.(2020·黑龙江省哈尔滨三中高三其他(文))设,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】解:因为函数在上单调递增,且,所以,即,所以,因为函数在上单调递减,且,所以,即,因为函数在上单调递减,且,所以,即,所以,故选:C5.(2

3、020·河北省衡水中学高三其他(文))函数的部分图象大致为()A.B.C.D.【答案】B易知函数的定义域为,由,则函数为偶数,排除选项D;当时,,排除选项C;由,排除选项A.故选:B.6.(2020·哈尔滨市第一中学校高三一模(文))已知是定义在上的奇函数,,且对任意,,,恒成立,则使不等式成立的的取值范围是()A.B.C.D.【答案】D【解析】因为函数的图象是由函数的图象向左平移1个单位长度得到,是定义在上的奇函数,所以函数的图象的对称中心为点,因为对任意,,,恒成立,所以函数在上单调递减,所以函数在上单调递

4、减,因为,所以,又,所以即,所以即,所以,所以使不等式成立的的取值范围是.故选:D.7.(2020·重庆高三其他(文))定义在R上的奇函数满足:,且当时,,若,则实数m的值为()A.2B.1C.0D.-1【答案】B【解析】由为奇函数知,∴,即,∴,∴是周期为3的周期函数,故,即,∴.故选:B.8.(2020·江西省高三二模(文))已知函数是定义在上的偶函数,且,,则()A.B.0C.1D.2020【答案】C【解析】由题,因为是定义在上的偶函数,所以,因为,所以,则,所以,所以是周期为4的函数,因为,所以;因为,

5、,所以,所以,故选:C9.(2019·天津高考模拟(文))已知函数,当时,恒有成立,则实数a的取值范围是()A.B.C.D.【答案】C易证函数f(x)为奇函数,∵时,恒有成立∴x=0时,f(a)0时,不成立,舍去当a<0时,-,解得-1若,则,成立;若,在单调递增,则恒成立综上故选:C10.(2020·四川省仁寿第二中学高三三模(文)

6、)已知函数,若对于,恒成立,则实数a的取值范围是()A.B.C.或D.【答案】A由题意,函数的定义域为,且所以函数是上的偶函数,且在上单调递增,又由,所以不等式对于恒成立,等价于对于恒成立,即对于恒成立.令,则,解得或,满足①式.令,令,则当时,即时,满足②式子;当,即时,不满足②式;当,即或时,由,,且或,知不存在a使②式成立.综上所述,实数a的取值范围是.故选:A.11.(2020·福建省厦门一中高三其他(文))已知函数若函数的零点有2个或3个,则实数a的取值范围为()A.B.C.D.【答案】B【解析】时,

7、,,当时,,递增,当时,,递减,且此时,时,,,当时,,递增,当时,,递减,且此时,所以极小值,极大值,,在且,,的示意图如图所示,所以当它与有2个或3个交点时,.故选:B.12.(2020·四川省遂宁市第二中学校高三其他(文))已知函数,若函数恰有个零点,则的取值范围为A.B.C.D.【答案】B【解析】函数恰有个零点,由题意可知显然不满足,当时,题意等价于,即函数和函数的图象有3个交点,当时,最多有2个交点,不合题意;当时,如图所示,原点为其一个交点,当,直线与相切时,设切点坐标为,由及导数的几何意义可得,解

8、得,由幂函数类型函数中系数对图象的影响可得要使得有三个交点应满足,综上可得的取值范围为,故选B.二、填空题:本大题共4小题,共20分。13.(2020·福建省高三其他(文))“熔喷布”是口罩生产的重要原材料,1吨熔喷布大约可供生产100万只口罩.2020年,制造口罩的企业甲的熔喷布1月份的需求量为100吨,并且从2月份起,每月熔喷布的需求量均比上个月增加10%.企业乙是企业甲熔喷布的唯

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。