一元二次方程复习课学案及练习.doc

一元二次方程复习课学案及练习.doc

ID:57396551

大小:315.00 KB

页数:12页

时间:2020-08-15

一元二次方程复习课学案及练习.doc_第1页
一元二次方程复习课学案及练习.doc_第2页
一元二次方程复习课学案及练习.doc_第3页
一元二次方程复习课学案及练习.doc_第4页
一元二次方程复习课学案及练习.doc_第5页
资源描述:

《一元二次方程复习课学案及练习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一元二次方程学案本章知识结构方程的解法实际问题一元二次方程应用直接开平方法因式分解法配方法公式法考点考法说明:课标对于一元二次方程的要求主要包括一元二次方程的概念,会用配方法、公式法、因式分解法解一元二次方程,以及用一元二次方程的知识解决实际问题。一元二次方程应用广泛,在日常生活、科学技术、环境保护、经济发展等领域均有涉及,解题关键是分析题中的等量关系,列方程解应用题以及方程与不等式、函数等结合的综合性题目将是今后中考的趋势。中考中对这章的考查形式多样,注重对学生方程思想、转化思想等思想方法的考查,对于学生分析问题和解决问题的能

2、力要求也比较高。【考点一】考查概念问题通常是考查一元二次方程的定义,此时要注意二次项系数不为0,在讨论含字母系数的一元二次方程问题时,命题者常利用a≠0设计陷阱。例1.(1)方程(m+1)xm2-2m-1+7x-m=0是一元二次方程,则m=.思路分析:首先根据一元二次方程的定义得,m2-2m-1=2;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m+1≠0来求m的值.解:m=3.(2)若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等于()A.1B.2C.1或2D.0思路分

3、析:首先得出m2-3m+2=0;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m-1≠0来求m的值.解:m=2.【考点二】一元二次方程的解法要根据方程的特点,灵活选用具体方法。对于特殊的方程要通过适当的变换,使之转化为常规的一元二次方程,如用换元法。例2.用适当的方法解一元二次方程(1)x2=3x(2)(x-1)2=3(3)x2-2x-99=0(4)2x2+5x-3=0思路分析:方程(1)选用因式分解法;方程(2)选用直接开平方法;方程(3)选用配方法;方程(4)选用公式法例3.若(x2+y2)2-4(x

4、2+y2)-5=0,则x2+y2=_________。思路分析:用换元法设x2+y2=m得m2-4m-5=0,解得m1=5,m2=-1对所求结果,还要结合“x2+y2”进行取舍,从而得到最后结果.解:x2+y2=5【考点三】一元二次方程的根的判别式可以用来:(1)不解方程,判断根的情况;(2)利用方程有无实数根,确定取值范围,解题时,务必分清“有实数根”、“有两个实数根”,“有两个相等实数根”,“有两个不相等实数根”等关键性的字眼。例4.(1)一元二次方程x2-2x-1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的

5、实数根C.只有一个实数根D.没有实数根思路分析:b2-4ac=(-2)2-4×(-1)=80解:B(2)若关于x的一元二次方程kx2-2x-1=0有两不相等的实数根,则k的取值范围是()A.k>-1B.k>-1且k≠0C.k<1D.k<1且k≠0思路分析:b2-4ac=(-2)2-4×(-1)k=4k+40得k-1,再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得k≠0.解:B例5.已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,求的值。思路分析:分式化简,一元二次方程根的判别式解

6、:∵ax2+bx+1=0(a≠0)有两个相等的实数根,∴b2-4a=0.∵a≠0,∴【考点四】列方程解应用题虽然是传统的题型,但一直是中考的热点,近年来热点又有新特点,注重考查了能力问题,表面文字比较复杂,但认真阅读,抓住实质,问题就迎刃而解了。例6.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程中正确的是()A.168(1+a%)2=128B.168(1-a%)2=128C.168(1-2a%)=128D.168(1-a2%)=128思路分析:增长率问题,利用关系式:变化前数量×(1±x)2=

7、变化后的数量。解:B例7.某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?思路分析:如果这种台灯售价上涨x元,那么每个台灯获利(40+x-30)元,每月平均销售数量为(600-10x)个,销售利润为(40+x-30)和(600-10x)的积.用一元二次方程解决实际问题时,所求得的结果往往有两个,而实际问题的答案常常是一个,这就需要我们仔细审题,

8、看清题目的要求,进而作出正确的选择。解:设这种台灯的售价上涨x元,根据题意,得(40+x-30)(600-10x)=10000.即x2-50x+400=0.解得x1=10,x2=40.所以每个台灯的售价应定为50元或80元.当台灯售价定为80元时,销售利润率为不

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。