资源描述:
《【高中数学试题试卷】高二下学期学前考试数学(理)试题(无答案)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、一.选择题(本大题共12小题,每题5分,共60分)21.过椭圆y+r=1的左焦点杠作直线/交椭圆于A,B两点,笃是椭圆右焦点,则abf2的周长为()A.8B.C.4^2D.2a/22.97若双曲线才”(d〉0)的离心率为2,则。等于(A.B.C-1D.1已知条件P'.x<,条件q—<,则/?是-ig成立的(xA.充分不必要条件B.必要不充分条件3.C.充要条件D.既非充分也非必要条件4.抛物线y=2+的准线方程为(5.A.C.1y=一一B.8命题“日心€/?,x3-x2+l>0"3x0gR,x3-x2+1<0B.VxgR,x3-x2
2、+10D.6.向量Q=(2,4,x),b=(2,y,2),A.—3B.1C.D.1x=——4的否定是3x0gR,x3-x2+10若
3、:
4、=6,且:丄八则x+y的值为()C.一3或1D.3或17.直线AB过抛物线b二兀的焦点F,与抛物线相交于A、B两点,且
5、AB
6、=3,则线段AB的中点到y轴的距离为()A.*B.1AB8.如图,ABCD—A
7、B
8、C
9、D
10、是正方体,B]E
11、=D]R=—」4,贝I」BE,DF
12、所成角的余弦值是()A.dB•丄C.Ad.更1721729.已知点B是点A(3,7,-4)在xOz平面上
13、的射影,则(W等于(A)(9,0,16)(B)25(C)5(D)1310.已知方程一+」一=1表示焦点在y轴上的椭圆,则加的取值范围是(
14、m
15、-12-mB•1l)与双曲线——/=l(n>0)有相同的焦点F,F‘,P,是两曲线的一mn个交点,则△耳P笃的面积是()A.4B.2C.112.设抛物线長=2兀的焦点为F,过点M(晶0)的直线与抛物线相交于儿B两点,与抛物线的准线相交于点C,
16、BF1=2,贝IJABCF与AACF的面积之比
17、
18、^址等于(A-5D-2一.填空题(本大题共4小题,每题5分,共20分)13.命题“存在一个无理数,它的平方是有理数”的否定是・2…14・若双曲线〒_丄=1的焦点到渐近线的距离为2血,则实数k的值是・k15.设抛物线C:y2=2x的焦点为F,直线/过F与C交于两点,若
19、AF
20、=30F
21、,贝畀的方程为216.若点O和点F(-2,0)分别为双曲线^--/=1(«>0)的中心和左焦点,点P为双曲线右支上cr的任意一点,则OPFP的取值范围为2^2"T"一.解答题(本大题共6小题,共70分)15.己矢口命题p:xeAfh.A={xa-22、]f命题B={x
23、x2-4x+3>0).(I)若的姑0,小3=心求实数a的值;(I【)若〃是g的充分条件,求实数a的収值范围.16.在正四棱柱ABCD-A^CQ中,/1A=2AB,E为棱CC;上的动点.(1)若E为棱CG的屮点,求证:人£丄平面BDE;(2)试确定E点的位置使直线AC与平面BDE所成角的余弦值是17.命题P:实数"满足壬一丄欢+•玄匸小,其中«7>0,命题®:实数x满足r+2x-8>0>(I)若住=1,且为真,求实数X的取值范围;M为(II)若-P是一越的充分不必要条件,求实数。的取值范围15.如图,四棱锥P—ABCD中,P
24、D丄底面ABCD,AB//DC,(1)证明:DM丄平面PBC;(2)求二面角A—DM—C的余眩值.棱PB的中点.2216.已知椭圆亠+乙=1(a>b>0)右顶点与右焦点的距离为V3-1,短轴长为2V2.cr(!)求椭圆的方程;(II)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为空,求直线4的方程.15.在平面直角坐标系xOy中,已知点A(-V2,0),B(V2,0),E为动点,且直线E4与直线EB的斜率之积为丐(1)求动点E的轨迹C的方程;(2)设过点F(1,O)的直线Z与曲线C相交于不同的两点M,N.若点P在y轴上,且
25、
26、阳
27、=
28、阳
29、,求点P的纵坐标的収值范围.