3、(4)设xfx()=e--1x,xÎ(0,1)则xxfx¢()=e->10,推得fx()>f(0)=0,即e>+x1,11所以x∫edx>∫(x+1)dx002p2p2(5)-x2-+(tp)2∫ecosxdxt=-xp∫ecos(t+p)(dt+p)p0p22-+(tp)2-(x+p)2=∫ecostdt=∫ecosxdx02222∵xÎ(0,)p,有x<+xp,x<(x+p),-x>-(x+p),22p22p2-x-(x+p)-x2-x2e>e,∫ecosxdx>∫ecosxdx0p42.(1)22
4、∵2£x+£117,6£∫(x+1)dx£511x2-xx2-x1(2)设fx()=e,xÎ[0,2],则fx¢()=e(2x-1)=0,得x=。2111--4224∵f(0)1,=f()=e,f(2)=e,M=e,m=e.211-2202-4x-x22x-x4.2e£∫edx£2,e-2e£∫edx£-2e023(3)设fx()=xarctan,xxÎ[,3].3∵fx¢()=arctanx+x> ,fx()[ 3,3]1+x233333M=3arctan3=pm=arctan=
5、p,3331833333p(3-)£∫3xarctanxdx£p(3-).183333132即p£∫3xarctanxdx£p93312p(4)设fx()==,xÎ(0,),有11cos+2x221-sinx2fx¢()=2sin2x>0,fx()[0,]p。(1cos+2x)1cos+2x2p所以M=f(0)=2,m=f()1=,2pp1p£∫2dx£201221-sinx2n3.(1)x[0,]11+x21nnxx11lim∫2dx=lim×,xÎ(0,)n®¥01+xn®
6、¥1+x22n®¥xÎ(0,)1:xn®0,21n!lim∫2xdx=0.n®¥01+xp(2)4nnpplim∫sinxdx=limsinx×,xÎ(0,).n®¥0n®¥44p∵limsinnx=0,lim4sinnxdx=0.n®¥n®¥∫04.fx()[,]"ab#$%&'fx()[,]"ab#()*+,-M&+.-m,/m£fx()£M.∵gx()>00mgx()£fxgx()()£Mgx()bbbb∫gxfxdx()()amgxdx()£gxfxdx()()£Mgxdx(),m£
7、£M.∫a∫a∫ab∫gxdx()abgxfxdx()()1234567$Îx(,),ab8f()x=∫a,b∫gxdx()abb9∫gxfxdx()()=f()x∫gxdx()aa练习7.331.(1)Fx¢()=sinxb(2)2Fx¢()=∫sinxdta112112(3)Fx¢()=×2x-×3x=×2x-×3x8128121+x1+x1+x1+xxx(4)Fx()=x∫dt-∫ftdt(),Fx¢()=2xa--fx()aaxx(5)22Fx()=x∫ftdt(),Fx¢()=2x∫ftdt()
8、+xfx()aa(6)F¢(x)=0p2∫costdtcosx202.(1)0lim=lim=1()x®0xx®0102p2∫1+tdt¥1+x4×2x1+x411(2)limlim=lim=432x®¥x¥x®¥4xx®¥2x2p2p22t2tx[∫(e-1)]dt02∫(e-1)dte×(-1)(3)00limlim=0pxx®0edtt0x®0e∫0231141213.(1)(x+)dx=(x-)=4∫1321x42x8