资源描述:
《微微积分答案 9》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、练习9.11.指出下列微分方程的阶数:解:(1)一阶(2)一阶(3)一阶(4)二阶2.验证下列各函数是否为所给微分方程的解,并指出哪些是特解哪些是通解。(ccc,,为任意常数)12解:(1)不是解(2)特解(3)通解(4)不是解3.写出以下列函数为通解的微服方程,其中ccc,,为任意常数1222解:(1)直接求式子求导,可得(x-yx)y¢+y=0(2)直接求式子求两次导,可得y¢¢+y¢-2y=0练习9.21.求下列各微分方程的通解或在给定初值条件下的特解:dy(1)解:=cosxdx2y两边同时积
2、分11-=sinx+c⇒y=-ysinx+c dy2x2(2)解:=2xdx⇒lny=x+c⇒y=c×ey(3)解法一:dxdydxy-+()=0⇒x-+yxy=c⇒(x-1)(y+1)=c或(1-x)(1+y)=c解法二:dydx=令h=+1y,x=-1x1+y1-xdhdx1c=-⇒lnh=ln+c⇒h=⇒(1-x)(1+y)=chxxx3232xxyy(4)解:x1(+x)dx-y1(+y)dy=0⇒+--=c132323232⇒2x+3x-2y-3y=c(5)解:xyyxe(e-)1dx+e
3、(e+)1dyxyxy+⇒-edxedye++(dxdy+)=0yxxy+⇒e-e+e=cyx⇒(e-1)(e+1)=cx(0)=p,t=0dx4tt(6)解:=edt⇒tanx=e+c⇒11=+c=0⇒c=02cosx故tttanx=e,x=arctanex2eyx(7)解:ydy=dx⇒=ln(1+e)+cx1+e2令x=1,y(1)1=⇒1=ln(1+e)+c⇒c=1-ln(1+e)22故2xy=2ln(1+e)+1-2ln(1+e)dydx(8)解:+=0⇒lny+arctanx=c2y1
4、+x令x=1,y(1)10=+p=c⇒c=p44p故lny+arctanx=42.求下列各微分方程的通解或特解:ydyxydydu(1)解:=令u=⇒=x+udxyxdxdx-1xduu12⇒x+u=⇒ln(2u-u)=lnx+c1dxu-12222⇒2uu-=×cx⇒2xy-y=c(2)解:令u=yxdu+u=2u+uxdxdudx=,u=lnx+c2ux22u=(lnx+c)⇒y=x(lnx+c)ydu2(3)解:令u=⇒x+u-u-1+u=0xdxdudx2⇒=⇒ln(u+1+u)=lnx
5、+c11+u2x2222⇒u+1+u=cx⇒y+x+y=cxyduu(4)解:令u=,x=sinu⇒lntan=lnx+cxdx2x=1,u=p2⇒ln1ln1=+c⇒c=0⇒u=2arctanx⇒y=2xarctanxxdxdu(5)解:令u=则=y×+uydydy22du1-3udu1-5u化简得y×+u=⇒y×=dy2udy2u2udu×dy12⇒=⇒-ln15-u=lny+c215-uy5令x=0则y)0(=,1u)0(=0得c=021523故1(-5u)=⇒y-5xy=15yy-1dyxy
6、(6)解:=,令u=dxyx+1x2duu-1du--1u则u+x=⇒x=dxu+1dx1+u(1+udu)dx12⇒-=⇒-ln1+u-arctanu=lnx+c2(1+u)x2令x=,1则y)1(=,0u)1(=,0得c=012-ln(1+u)arctan-u=lnx222x+yy故⇒ln+2arctan=-2lnx2xx22y⇒ln(x+y)2arctan+=0x3.求下列微分方程的通解:dy-2x--y1-2-1(1)解:=,D==-¹30dxx+2y-112-2x-y-1=0x0=-1
7、x=x-1⇒,令x+2y-1=0y=1y=h+10dh-2x-hh则=,令u=dxx+2hxdu-2-u1+2udx故x+u=⇒du=2dx1+2u-2-2u-2ux12⇒-ln-2-2u-2u=lnx+c122c22⇒2(1++uu)=⇒x+hxh+=c2x22⇒(x+1)+(x+1)(y-1)(+y-1)=c122即:x+y+xy+-=xycdy7x-3y-77-3(2)解:=D==40¹0dx-3x+7y+3-377x-3y-=70⇒x0=1x=x+1-3x+7y+
8、=30y=0y=h0u=hdh7x-3hxdu73-u7u-3dx得=⇒u+x=⇒du=2dx-3x+7hdx-+37u77-ux1231+u⇒-ln1-u-ln=lnx+c2141-u31+u7c52c2⇒(1-u)×=⇒(1+u)7(1-u)7=21-uxx52⇒(hx+)(xh-)=c25⇒(x--y1)(x+-y1)=cdy-x-y-1-1-1(3)解:=D==0dx2x+2y-122dz-z-1z-2令z=x+y=1+=dx2