函数性质的运用

函数性质的运用

ID:40811356

大小:32.00 KB

页数:3页

时间:2019-08-08

函数性质的运用_第1页
函数性质的运用_第2页
函数性质的运用_第3页
资源描述:

《函数性质的运用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《函数性质的运用》案例分析铁一中唐玉华一、相关背景介绍建构主义理论告诉我们,学习是学生在原有认知经验基础上主动建构新知识的过程。这一建构过程实际上需要学生将原有知识与新知识(包括思想、观点、方法)进行有效组合与沟通。而学生知识、方法的迁移,水平、能力的提高均依赖于这个过程。从这个意义上说,数学学习实际上是指学生对数学现象的领悟和实质理解。抽象函数这部分内容,体现了数学的高度抽象性和简洁性,近几年高考几乎每年都有类似的题目。由于它的提干都是由抽象的数学符号给出,因此它对学生阅读理解数学语言和符号的能力要求很高。对学生的思维能力是一个大的挑战。二、本节课教学目标1、

2、知识与技能①使学生深刻理解函数的奇偶性、周期性、对称性等性质。掌握代数变换的方法。②学会阅读理解数学语言和符号,会综合运用函数性质解题。2、过程与方法通过让学生经历阅读、理解、探索求解的过程,渗透化归转化的思想、数形结合的思想。寻求合理、有效的途径,解决数学问题。3、情感、态度、价值观使学生领会数学的抽象性和严谨性,培养他们实事求是的科学态度,积极参与和勇于探索的精神。4、重点:综合运用函数性质解题难点:对文字语言、符号语言、图形语言三种语言的理解和相互转换。三、设计理念1、首先通过复习函数的性质导入,训练学生对数学的文字语言、符号语言和图形语言这三种语言的相互

3、转换2、例1的设计的意图是:加深学生对函数概念、性质的理解。教学生学会阅读、理解数学语言、符号;学会文字语言、图形语言、符号语言的相互转化。通过一题多解、一题多思,渗透化归转化和数形结合的思想,以及代数变换的方法,培养他们的思维能力。课堂形式是:分组讨论。3、例2的设计主要让学生独立思考解答探求多种解法,思考、交流、表达,体现学生主体参与合作学习。要求学生综合运用函数性质解题,提高他们抽象思维能力,问题延伸思考,主要针对较好学生,让他们课后继续钻研,提高分析问题、解决问题能力,也体现了分层教学的思想。四、下面是课堂实录《函数性质的运用》师:前面我们已经分别复习了

4、函数的奇偶性、单调性、对称性及周期性等。今天我们学习函数性质的综合运用。请先思考回答以下问题:①若函数f(x)是奇函数,如何用符号表示?用图形表示?②若给出图形请用文字语言叙述它的对称性,用符号如何表示?③若f(x+2)=f(x),你能有何结论?如何用文字语言叙述,用符号表示?生1:①f(-x)=-f(x)生2:②函数f(x)关于x=1对称,即f(1+x)=f(1-x)生3:③f(x)是周期函数,周期为T=2,师:由f(x+2)=-f(x)你能说出什么信息?生:f(x)的周期是T=4师:为什么?能否用图象解释?生:将式中的x用x+2来替代,得到:f(x+4)=-

5、f(x+2)又因为-f(x+2)=f(x),所以f(x+4)=f(x)即:T=4但是不太用图像来解释师:提示:从图示看出f(x+4)=f(x)的周期为4。总结:通过对函数的奇偶性、对称性、周期性等性质的复习,我们要熟悉数学的文字语言,符号语言,图形语言三种语言的转换。好,下面我们来看例1例1:设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)=?生1:利用周期性由f(x+2)=-f(x)可得到f(x+4)=f(x)所以f(7.5)=f(8-0.5)=f(-0.5)=-0.5生2:直接利用f(x+2)=-f

6、(x)f(7.5)=f(5.5+2)=-f(5.5)=-f[-f(3.5)]=f(3.5)=-f(1.5)=f(-0.5)=-0.5师:还有其他方法吗?f(x)是奇函数且f(x+2)=-f(x),除了能说出周期T=4外,还能说出哪些信息?(师提示)生:f(x+2)=-f(x)=f(-x)而f(x+2)=f(-x)得到f(x)关于直线x=1对称师:很好,你能否根据函数的对称性、周期性及奇偶性,画出它的图象?从而利用图象来解题呢?生:从图中可以看出f(7.5)=f(-0.5)=-0.5师:我们在解题的过程中,应善于利用数形结合的思想方法,有时能收到意想不到的效果的。

7、师总结:方法一:主要要求对符号的深刻理解及获取信息。方法二:利用f(x+2)=-f(x),通过转化达到解题的目的,渗透了转化的思想。方法三:利用函数的几何性质,通过作图,利用数形结合的思想来解题。下面我们来将这道题目进行变化:变化1:已知条件不变,问题变为当x∈[-1,0]时,求f(x)的解析式生1:设x∈[-1,0]则-x∈[0,1]∴f(-x)=-x,又∵f(-x)=-f(x)∴f(x)=x∴当x∈[-10]时,f(x)=x师:能否总结一下解题步骤?生2:小结:首先要“问啥设啥”,不要把变量设错了区间;第二,把变量转化到已知区间上去最后,再利用函数的奇偶性、

8、周期性求出f(x)的解析

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。