资源描述:
《泛函分析 答案(张恭庆)2.6节》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、xABx==2.6.1设X是B空间,求证:1Bx=x=B.即B单L(X)中的可逆(有有界逆)算子集射.是开的.BA=IyX,Bx=y1证明设A,AL(X,)有解x==ABxAy.即B满射.1考虑当>0充分小时,是否BAI==BBI111BB==BAA.有(AI+)L(X.)注意到2.6.2设A是闭线性算于,1AIA+=+(IA,)根据引理1n,,p(A)两两互异.又1设x是对应于的本征元2.2.6,当A1<时,ii11(i1=,2,,n)求证x,x,,x(IA+)L(X)故当12n1是线性无关的.11<1时,(IA+)
2、A证明用反证法.令x为第一个mL(X,)而可由它的前面m1个向量线11()AI+=+(IAA11)性表出的向量,即m1L(X.)xx=(1)mkkk1=这里用到,A,BL(X,)且x,x,,x线性无关,对(1)112m1AB==BAIB=A.事实上,两边施以IA得到m12nnnAxxA1rAl==()==imA1.nm10=()mmkIAx=()mkIAx=0,k1=()m1IAx0A=x0x0===()xkmkk0,(IAx0)=k1=x,x,,x12m1线性无关kk1=0k(Z)
3、kmk()==0k1,2,,m1()(1)mk==0k1,2,,m1.()=11==1,k10,2102,于是(1)x0=.与x为特征=1同理=nmmn0n,n0,向量矛盾.由此可见,如果=0,则022.6.3在双边l空间上,考察右推=0z(Z)x0=.n移算于A:如果0,(0x,=nn,,+1,10,,1,,,n1n,l+++2222<+++<+,n0nnyA==x(,,nn+1,,,10,1,,,,n1nnn===1n1即得Ax=
4、xA=1,34++nn+122+112n+22n<+000x()nn=(0,0,,0,,0,),Ax()=(0,0,,0,1,0,n1==n10矛盾.xA(n)n1+因此只能=00n()n=0z(Z)x0=.于是x=(0,0,,,1,0,)(nn)()(A?)=.(xAx,z0)=pzz0=(nZ)再证nn+1(A?)=.RIA()=2.(2)r即证RIA()={}.(2)与(1)完全类似,同理可得设zRIA,()则对z.=2再证c(A)={=1.}要证x,(
5、(IAx,)z0=RIA()+()z0=kk1kk=nRIA()=()n2x=(0,0,,0,1,0,),56先看=1.222取N,s.t.<,x,nnN1=+(IAxyyxx)=kkk=1(kZ).(jN)j特别对令y,=jk0=!0j()>+N1y=(,0,0,,0,1,0,,0,)2,但是y=(,0,0,,,,,,0,0)yN10,1,Nxx1=,012xxxx012===x00=为了证明yRIA,()即xx0=x201证x,2s
6、.t.==xxx0=211(IA)xyyxxk==(Z)kkk1矛盾.由此可见,yRIA.()即有2j(jN)RIA().再证注意到y,=j2!0j()>+N1RIA()=.设()xxkk1k=(kN.)=,,nn+1,,,10,1,,,,n1nl78xx0kk1=>(kN1xx+)k=N1+kN1.yI=(A)xkkk=1k1kk1yxx=yxx=kkk1kkk1令N1+当=1时,()kNj22x,k=jk1=+显然={k}x.
7、0k()"N+1={}22y!k2xx={k},并满足重复上面证明即可.yxxk.=(Z)kkk12从而(IAxy,)=即2.6.4在l空间上,考察左推yRIA.()1Ac().移算子对于一般的=1,可以化归A:xx,(1,2,xn1,x,n)(x,,x2n1,x,n=1,情况.求证:(A)={C
8、<1;}p910cp(A)={C
9、=1;A}()=(A)cA.>=1A