2016年辽宁省盘锦高中高三理科上学期人教b版数学11月月考试卷

2016年辽宁省盘锦高中高三理科上学期人教b版数学11月月考试卷

ID:31885279

大小:345.19 KB

页数:13页

时间:2019-01-24

2016年辽宁省盘锦高中高三理科上学期人教b版数学11月月考试卷_第1页
2016年辽宁省盘锦高中高三理科上学期人教b版数学11月月考试卷_第2页
2016年辽宁省盘锦高中高三理科上学期人教b版数学11月月考试卷_第3页
2016年辽宁省盘锦高中高三理科上学期人教b版数学11月月考试卷_第4页
2016年辽宁省盘锦高中高三理科上学期人教b版数学11月月考试卷_第5页
资源描述:

《2016年辽宁省盘锦高中高三理科上学期人教b版数学11月月考试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2016年辽宁省盘锦高中高三理科上学期人教B版数学11月月考试卷一、选择题(共12小题;共60分)1.已知集合A=1,a,B=xx2−5x+4<0,x∈Z,若A∩B≠∅,则a等于  A.2B.3C.2或4D.2或32.已知函数fx=3sin2x−π3,则下列结论正确的是  A.导函数为fʹx=3cos2x−π3B.函数fx的图象关于直线x=π2对称C.函数fx在区间−π12,5π12上是增函数D.函数fx的图象可由函数y=3sin2x的图象向右平移π3个单位长度得到3.等比数列an中,已知对任意正整数n,a1+a2+a

2、3+⋯+an=2n+m,则a12+a22+a32+⋯+an2等于  A.134n−1B.132n−1C.4n−1D.2n−124.当x,y满足不等式组x+2y≤2,y−4≤x,x−7y≤2时,−2≤kx−y≤2恒成立,则实数k的取值范围是  A.−1,1B.−2,0C.−15,35D.−15,05.一个几何体的三视图如图所示,则该几何体的体积为  A.143B.5C.163D.66.已知命题甲是“xx2+xx−1≥0”,命题乙是“xlog32x+1≤0”,则  A.甲是乙的充分条件,但不是乙的必要条件B.甲是乙的必要条

3、件,但不是乙的充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件第13页(共13页)7.已知fʹx为fx的导函数,若fx=lnx2,且b∫1b1x3dx=2fʹa+12b−1,则a+b的最小值为  A.42B.22C.92D.92+228.已知函数fx对任意x∈R都有fx+4−fx=2f2,若y=fx−1的图象关于直线x=1对称,且f1=2,则f2013=  A.2B.3C.4D.69.方程x−−y2+2y+8x−y=0表示的曲线为  A.一条直线和一个圆B.一条射线与半圆C.一条射线与一段劣弧D

4、.一条线段与一段劣弧10.已知函数fx=Acos2ωx+φ+1(A>0,ω>0,0<φ<π2)的最大值为3,fx的图象与y轴的交点坐标为0,2,其相邻两条对称轴间的距离为2,则f1+f2+f3+⋯+f2016的值为  A.2468B.3501C.4032D.573911.已知双曲线x2a2−y2b2=1a>0,b>0,A1,A2是实轴顶点,F是右焦点,B0,b是虚轴端点,若在线段BF上(不含端点)存在不同的两点Pii=1,2,使得△PiA1A2i=1,2构成以A1A2为斜边的直角三角形,则双曲线离心率e的取值范围是  

5、A.2,6+12B.2,5+12C.1,6+12D.5+12,+∞12.设函数fx=exx3−3x+3−aex−xx≥−2,若不等式fx≤0有解,则实数a的最小值为  A.2e−1B.2−2eC.1−1eD.1+2e2二、填空题(共4小题;共20分)13.在平面直角坐标系xOy中,已知A1,0,B0,1,点C在第一象限内,∠AOC=π6,且∣OC∣=2,若OC=λOA+μOB,则λ+μ的值是 .14.已知边长为23的菱形ABCD中,∠BAD=60∘,沿对角线BD折成二面角为120∘的四面体,则四面体的外接球的表面积为 

6、.15.如果定义在R上的函数fx满足:对于任意x1≠x2,都有x1fx1+x2fx2>x1fx2+x2fx1,则称fx为“H函数”.给出下列函数:①y=−x3+x+1;②y=3x−2sinx−cosx;③y=ex+1;④fx=ln∣x∣,x≠00,x=0.其中是“H函数”的序号有 .16.设抛物线x=2pt2y=2pt(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C72p,0,AF与BC相交于点E.若∣CF∣=2∣AF∣,且△ACE的面积为32,则p的值为 .第13页(共13页)三、

7、解答题(共7小题;共91分)17.已知△ABC的面积S满足2−3≤S≤1,且AC⋅CB=−2,∠ACB=θ.(1)若m=sin2A,cos2A,n=cos2B,sin2B,求∣m+2n∣的取值范围;(2)求函数fθ=sinθ+π4−43sinθcosθ+cosθ−π4−2的最大值.18.如图,四棱锥P−ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=π3,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B−AF−D的正弦值.19.已知数列an,an>0,其前n项和Sn满足Sn=

8、2an−2n+1,其中n∈N*.(1)设bn=an2n,证明:数列bn是等差数列;(2)设cn=bn⋅2−n,Tn为数列cn的前n项和,求证:Tn<3;(3)设dn=4n+−1n−1λ⋅2bn(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有dn+1>dn成立.20.平面直角坐标系xOy中,椭圆C:x2a2+y2b

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。