2013版高中数学 2.12函数模型及其应用课时提能训练 苏教版

2013版高中数学 2.12函数模型及其应用课时提能训练 苏教版

ID:29947935

大小:246.50 KB

页数:7页

时间:2018-12-25

2013版高中数学 2.12函数模型及其应用课时提能训练 苏教版_第1页
2013版高中数学 2.12函数模型及其应用课时提能训练 苏教版_第2页
2013版高中数学 2.12函数模型及其应用课时提能训练 苏教版_第3页
2013版高中数学 2.12函数模型及其应用课时提能训练 苏教版_第4页
2013版高中数学 2.12函数模型及其应用课时提能训练 苏教版_第5页
资源描述:

《2013版高中数学 2.12函数模型及其应用课时提能训练 苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【全程复习方略】2013版高中数学2.12函数模型及其应用课时提能训练苏教版(45分钟100分)一、填空题(每小题5分,共40分)1.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为______副.2.某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件______元.3.如图是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系图,若用黑点表示张大爷家的位置,则张大爷散步行走的

2、路线可能是_______.4.某汽车运输公司,购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y(万元)与营运年数x的关系如图所示(近似抛物线的一段),则每辆客车营运______年可使其营运年平均利润最大.5.如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是am(0<a<12)、4m,不考虑树的粗细.现在想用16m长的篱笆,借助墙角围成一个矩形的花圃ABCD,设此矩形花圃的面积为Sm2,S的最大值为f(a),若将这棵树围在花圃内,则函数u=f(a)的图象大致是_______.6.某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加

3、10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-,则总利润L(Q)的最大值是______.7.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是_____.8.(2011·福建高考)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及常数x(0<x<1)确定实际销售价格c=a+x(b-a),这里,x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c-a)是(b-c)和(b-a)的等比中项,据此可得,最佳乐观系数x的值等于_______.二、解答题(每小题15分

4、,共45分)9.(2012·苏州模拟)某公司生产的A种产品,它的成本是每件2元,售价是每件3元,年销售量为100万件.为获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(单位:十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:x(十万元)012…y11.51.8…(1)求y与x之间的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;(3)如果投入的年广告费为x,x∈[1,3]十万元,问年广告费在什么范围内,公司获得的年利润随广告费的增大而增大?10.某公司有

5、价值a万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值y万元与技术改造投入x万元之间的关系满足:①y与a-x和x的乘积成正比;②x=时,y=a2;③0≤≤t,其中t为常数,且t∈[0,1].(1)设y=f(x),求f(x)的表达式,并求y=f(x)的定义域;(2)求出附加值y的最大值,并求出此时的技术改造投入.11.(2012·盐城模拟)某市出租汽车的收费标准如下:在3km以内(含3km)的路程统一按起步价7元收费,超过3km以外的路程按2.4元/km收费.而出租汽车一次载客的运输成本包含以下三个部分:一是固定费用约为2.3

6、元;二是燃油费,约为1.6元/km;三是折旧费,它与路程的平方近似成正比,且当路程为100km时,折旧费约为0.1元.现设一次载客的路程为xkm.(1)试将出租汽车一次载客的收费F与成本C分别表示为x的函数;(2)若一次载客的路程不少于2km,则当x取何值时,该市出租汽车一次载客每千米的收益y(y=)取得最大值?【探究创新】(15分)某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.5千美元~8千美元的地区销售该公司A饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.(1)下列几个模拟函数中(x表示人均GDP,单位:千美元,y表示年人均A饮

7、料的销量,单位:升),用哪个模拟函数来描述年人均A饮料销量与地区的人均GDP关系更合适?说明理由.①y=ax2+bx,②y=kx+b,③y=logax+b,④y=ax+b.(2)若人均GDP为1千美元时,年人均A饮料的销量为2升,人均GDP为4千美元时,年人均A饮料的销量为5升,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均A饮料的销量最多是多少?答案解析1.【解析】利润z=10x-y=10x-(5x+4000)≥0.解得x≥800

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。