基于copula―covar模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究

基于copula―covar模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究

ID:25002773

大小:53.00 KB

页数:6页

时间:2018-11-16

基于copula―covar模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究_第1页
基于copula―covar模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究_第2页
基于copula―covar模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究_第3页
基于copula―covar模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究_第4页
基于copula―covar模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究_第5页
资源描述:

《基于copula―covar模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、基于Copula―CoVaR模型的次贷危机前后伦铜和沪铜期货市场的风险溢出效应研究  一、引言  2008年美国次贷危机期间,风险溢出从美国转移到别的国家和地区。金融危机使金融机构和金融市场遭受比正常风险更多的损失。伦铜指数在2008年半年时间中从9000美元/吨跌至2800美元/吨,我国沪铜期货从65000元/吨下跌至22000元/吨。也就是说,例如LME这样的发达市场通常是有定价权的。但是我们发现在2008年以后沪铜的角色越来越重要。国际投资者需要基于这种溢出效应调整他们的投资组合,而本地的投资者可以利用这种变化来预测价格走势。因此中国铜期货的溢出效应值得仔细

2、分析。关于伦敦金属交易所和其他期货市场之间的联动效应的文献有很多,但关于伦铜和沪铜期货市场的溢出效应的文献仍不发达。本文旨在填补这一空白。  二、风险溢出效应的实证分析  1.数据选取  本文选取LME市场和SHFE市场的主要铜期货合约的收盘价,即伦铜连三和沪铜连三的收盘价,所有数据来自于彭博数据库。样本选取区间从2006年1月1日到2012年12月31日。把全部样本区间分为三个子阶段,2006年―2007年为金融危机前,2008年―2009年是金融危机期间,2010年―2012年是金融危机后。同时,由于两个市场的铜价报价单位不同,所以将伦铜价格乘以汇率改成元/吨

3、,数据同样于彭博数据库。  由于时区不同,LME和SHFE的交易时间也不同。SHFE上午9点开盘,下午3点收盘,LME在北京时间晚上7:45开盘,次日凌晨1点收盘。因此从风险溢出方向来看,必定是当日的沪铜影响当日的伦铜,当日的伦铜影响次日的沪铜。本文采用同一天的数据研究沪铜对伦铜的溢出效应,用日间数据研究当日伦铜对次日沪铜的溢出效应。  两国的节假日也有所不同。为了保持数据的一致性,本文删除两个市场中的长假数据,用插入法处理偶然的单日假期。数据处理后,剩下1652个收盘价数据,第一个子阶段中有467个,第二个子阶段中有476个,第三个子阶段中有709个。  2.边

4、缘分布模型的参数估计  GARCH(1,1)-t模型是由均值方程和条件方差方程两部分组成,为均值方程,为条件方差方程。  表1边缘分布模型GARCH(1,1)-t的参数估计及检验结果    表1中KS统计量和概率值表明在5%的显著水平下,每个序列都不能拒绝变换后序列服从(0,1)分布的原假设。每个变换后的序列不存在自相关,说明变换后的序列是独立的。K-S统计量和自相关检验表明,根据GARCH(1,1)-t模型的边缘分布,积分变换后的序列服从(0,1)上的均匀分布。这说明GARCH(1,1)-t模型更适合每个序列的边缘分布,且可用于描述收益率序列的边缘分布。  3.

5、最优Copula函数的参数估计及确定  在用GARCH(1,1)-t模型拟合出伦铜和沪铜的收益率序列后,得到标准残差和,积分变换后得到独立同分布的新时间序列。把新的时间序列放入五种Copula函数中,利用参数估计法估计每个Copula函数的参数,然后通过卡方检验选择最优的Copula函数检验新序列间u,v的相依结构。最终可以得到伦铜和沪铜收益率的联合分布。  然后运用两步极大似然函数法检验每个Copula函数的参数,结果如表2所示。  从表2的结果可知,在第一阶段,Clayton是描述沪铜对伦铜的溢出效应的最优函数,t-Copula是描述伦铜对沪铜溢出效应的最优函

6、数。在第二阶段,Gumbel是描述沪铜对伦铜溢出效应的最优函数,而描述伦铜对沪铜溢出效应的最优函数是t-Copula。在第三阶段,Gumbel是描述沪铜对伦铜溢出效应的最优函数,Clayton是描述伦铜对沪铜溢出效应的最优函数。  4.CoVaR计算及结果分析  以第一阶段沪铜对伦铜的溢出效应为例。首先计算沪铜的标准残差序列的分位数,可得到=-1.8077。再得到伦铜的标准残差序列的分位数,最终得到伦铜的CoVaR值。  然后根据求得=2.077-1.961=0.116  再根据求得=(0.116/1.961)*100%=5.9%  其他子阶段的溢出效应的结果也可

7、由此得到,结果如表3所示。  溢出效应值得结果显示:(1)CoVaR可以比VaR更清晰和全面地反应真实的风险价值。在第二阶段,如果只考虑到沪铜本身,当金融危机发生,铜的风险值只有1.657,但是实际的风险值是2.413。(2)从风险溢出方向来看,不论是伦铜影响沪铜还是沪铜影响伦铜,两者之间都是正向的溢出效应,这刚好符合铜期货的实际价格波动。(3)无论是伦铜影响沪铜还是沪铜影响伦铜,第二阶段的风险溢出效应都比其他阶段强。因此如果危机发生,不同市场间的联系将加强,应严格监控金融市场的各个部门并且采取防范措施阻止风险传染。(4)在次贷危机前后,伦铜和沪铜间的风险溢出效应

8、有显著地改

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。