资源描述:
《芝罘区数学变量与函数》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、【芝罘区数学】【芝罘区数学】14.1变量与函数(1)教学目标①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。能分清实例中的常量与变量,了解自变量与函数的意义。②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。教学重点与难点重点:函数概念的形成过程。难点:正确理解函数的概念。教学准备每个小组一副弹簧秤和挂件,一根绳子。教学设计提出问题:1.汽车以60千米/时的速度匀速行驶。
2、行驶里程为s千米,行驶时间为t小时。先填写下面的表,再试着用含t的式子表示s:t(小时)12345s(千米)2.已知每张电影票的售价为10元。如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?注:(1)让学生充分发表意见,然后教师进行点评。(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。动手实验1.在一根弹
3、簧秤上悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:悬挂重物的质量m(kg)弹簧长度l(cm)如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)。设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?注:分组进行实验活动,然后各组选派代表汇报。【芝罘区数学】【芝罘区数学】通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学
4、会了运用表格形式来表示实验信息。探究新知(一)变量与常量的概念1.在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程。其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的。在一个变化过程中,数值发生变化的量,我们称之为变量。也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量。2.请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量。3.举出一些变化的实例,指出其中的变量和常量。注:分组活动.先独立思考,然后组内交流并作记录,最后各组选派代表汇报。培养学生主动参与、合作交流并
5、能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力。(二)函数的概念1.在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有惟一确定的值。2.分组讨论教科书P.117“观察”中的两个问题。注:使学生加深对各种表示函数关系的表达方式的印象。3.一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值。例如在问
6、题1中,时间t是自变量,里程s是t的函数。t=1时,其函数值s为60,t=2时,其函数值s为120。同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52。巩固新知下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?1.右图是北京某日温度变化图2.如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y=×4×x3.国内平信邮资(外埠,100克内)简表:信件质量m/克O7、量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法。总结归纳1.常量与变量的概念2.函数的定义3.函数的三种表示方式【芝罘区数学】【芝罘区数学】注:通过总结归纳,完善学生已有的知识结构。布置作业1.必做题:教科书P.118习题11.1第1题。教学反思14.1变量与函数(2)教学目标①理解掌握函数的概念,能根据所给条件写出简单的函数关系式.②经历从实际问题中得到函数