copula-based multivariate input models for stochastic simulation

copula-based multivariate input models for stochastic simulation

ID:7285333

大小:2.41 MB

页数:15页

时间:2018-02-10

copula-based multivariate input models for stochastic simulation_第1页
copula-based multivariate input models for stochastic simulation_第2页
copula-based multivariate input models for stochastic simulation_第3页
copula-based multivariate input models for stochastic simulation_第4页
copula-based multivariate input models for stochastic simulation_第5页
资源描述:

《copula-based multivariate input models for stochastic simulation》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、OPERATIONSRESEARCHinforms®Vol.57,No.4,July–August2009,pp.878–892issn0030-364Xeissn1526-54630957040878doi10.1287/opre.1080.0669©2009INFORMSCopula-BasedMultivariateInputModelsforStochasticSimulationBaharBillerTepperSchoolofBusiness,CarnegieMellonUnivers

2、ity,Pittsburgh,Pennsylvania15213,billerb@andrew.cmu.eduAslarge-scalediscrete-eventstochasticsimulationbecomesatoolthatisusedroutinelyforthedesignandanalysisofstochasticsystems,theneedforinput-modelingsupportwiththeabilitytorepresentcomplexinteractionsandi

3、nterde-pendenciesamongthecomponentsofmultivariatetime-seriesinputprocessesismorecriticalthanever.Motivatedbythefailureofindependentandidenticallydistributedrandomvariablestorepresentsuchinputprocesses,acomprehen-siveframeworkcalledVector-Autoregressive-To

4、-Anything(VARTA)hasbeenintroducedformultivariatetime-seriesinputmodeling.Despiteitsflexibilityincapturingawidevarietyofdistributionalshapes,weshowthatVARTAfallsshortinrepresentingdependencestructuresthatariseinsituationswhereextremecomponentrealizationsocc

5、urtogether.WedemonstratethatitispossibletoextendVARTAtoworkforsuchdependencestructuresviatheuseofthecopulatheory,whichhasbeenusedprimarilyforrandomvectorsinthesimulationinput-modelingliterature,formultivariatetime-seriesinputmodeling.Weshowthatourcopula-b

6、asedmultivariatetime-seriesinputmodel,whichincludesVARTAasaspecialcase,allowsthedevelopmentofstatisticallyvalidfittingandfastsamplingalgorithmswellsuitedfordrivinglarge-scalestochasticsimulations.Subjectclassifications:correlation;estimation;sampling;timese

7、ries.Areaofreview:Simulation.History:ReceivedJuly2006;revisionsreceivedJune2007,January2008;acceptedFebruary2008.PublishedonlineinArticlesinAdvanceJune3,2009.1.IntroductionAcloselookattheexistingsimulationinput-modelingliteraturerevealsthatmuchoftheprevio

8、usworkontime-Animportantstepinthedesignofstochasticsimulationisseriesinputprocessesisbasedonlinear,univariatetime-inputmodeling,i.e.,modelingtheuncertaintyintheinputseriesmodelssuchastheautoregressivemovingaverageen

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。