浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc

浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc

ID:58654052

大小:168.00 KB

页数:12页

时间:2020-10-16

浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc_第1页
浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc_第2页
浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc_第3页
浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc_第4页
浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc_第5页
资源描述:

《浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、浙教版八年级下数学第五章《特殊平行四边形》中考试题——顾家栋解答题题型:解答题.(2014四川巴中中考)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是  ,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.答案:(1)EH=FH(2)BH=EH方法技巧:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,(2)由(1

2、)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解析:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形)∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).知识点:矩形的判定.题目难度:普通题目分值:6分.(2014山东威海中考)猜想与证明:如图1摆放矩形纸片ABCD

3、与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.答案:(1)DM=DE(2)证明见解析方法技巧:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜

4、边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明.解析:(1)猜想:DM=ME如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在Rt△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME,故答案为:DM=ME.(2)如

5、图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME..知识点:四边形综合题.题目难度:较难题目分值:11分.(2014湖北咸宁中考)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作B

6、P的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为_______,点D的坐标为_______(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.答案:(1)45°,(t,t)(2)t为4秒或(4-4)秒(3)不变,周长为8方法技巧:(1)易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.(2)由于∠EBP=45°,故图1是以正方形为背景的一

7、个基本图形,容易得到EP=AP+CE.由于△PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.(3)由(2)已证的结论EP=AP+CE很容易得到△POE周长等于AO+CO=8,从而解决问题.解析:解:(1)如图1,由题可得:AP=OQ=1×t=t(秒)∴AO=PQ.∵四边形OABC是正方形,∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.∵DP⊥BP,∴∠BPD=90°.∴∠BPA=90°-∠DPQ=∠PDQ.∵AO=PQ,AO=AB,∴AB=PQ.在△

8、BAP和△PQD中,∴△BAP≌△PQD.∴AP=DQ,BP=PD.∵∠BPD=90°,BP=PD,∴∠PBD=∠PDB=45°.∵AP=t,∴DQ=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。