数学分析试题

数学分析试题

ID:83401134

大小:12.56 MB

页数:146页

时间:2023-07-02

上传者:无敌小子
数学分析试题_第1页
数学分析试题_第2页
数学分析试题_第3页
数学分析试题_第4页
数学分析试题_第5页
数学分析试题_第6页
数学分析试题_第7页
数学分析试题_第8页
数学分析试题_第9页
数学分析试题_第10页
资源描述:

《数学分析试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

ᦪ§1ᦪᭆᑡ:MIIMTW+z+…ᓃಘ+ᕜ+…+IX)+x+•••X+XI>IX|-(IXjI+IxIH---Fix").2;J23..a+b\a-bmax(a,b)=a+b\a-b\min(஻,b)4.789:;Ḅ=ᩩ?ᑖAB஺Db,EFGHḄᜳ:B0,J.K9:;Ḅ☢s(0),O.ᐸQRS.5.ᙠVWBrḄᳫᑁ[ᐭ]ᑁ^ᙊ`aJbᙊ`Ḅcd⊤BᐸfḄᦪaO.KᦪḄQRS.6.hiᐳklmnᐰpB20km,ἠstQ᝞vwᙶ5kmy(ᒹ{5km)ὅᦈ~1ᐗ5kmᙠ15kmy(ᒹ{15km)ὅᦈ~2ᐗᐸᦈ~2ᐗ5:.Jbἠs⊤BmḄᦪaOᦪḄ;.7.]ᾭᘤ]9:.EHrḄᓄtB/(/),9:ᑖAᨵᐵ/(0)=0,/(10)=20,f(20)=0,.f(t)(0

110.")=*■ᙠ(-8,+8)ᨵµ.11.ᵨ·Q¸¹º»ᦪ¼µaOf(x)=—ᙠ(0,1)¼µ.X12.J=ᏔᦪḄwd¬Ꮤᦪa=᜻ᦪḄwd¬Ꮤᦪa]᜻ᦪD]ᏔᦪḄwd¬᜻ᦪ.13.½f(x)BQRᙠ(-00,+00)ᑁḄ¾¿ᦪa/(x)ÀᑖÁᡂ᜻ᦪDᏔᦪGD.14.ᵨ·Q¸¹º»vᙠ(-co,+oo)Ã(1)f(x)¬᜻ᦪ(2)/(x)¬ᓫÅÃᓣᦪ(3)/(x)¼ÇÈ(4)/(x)¼Ãµ.§2ÉᔠᦪËÌᦪ1.½f(x)=1X,./(/(x))=X.1+X2..ᑡᦪḄÌᦪÍᐸQRSv(1)y=—(x+—),10.**)[-x2,x>0..Éᔠᦪ/(g(x))ag(7(x)).5.½f(x)=-^=,.(f஺/஺…஺/)(x).J"'~~'6.½/(x)=ll+xl-ll-xl,J.(/஺(஺…஺/)(x).7.½/(%)=—5—a.f(fM),/(/(/(x))),/(-5—).1-xf[x}§3Øᦪ2

21.ᑡᦪᑖAÙÚᦪḄQRSDÛSa᜻Ꮤឋaᕜ®ឋaᨵµឋaOᦪḄ;v(1)y=lxl(2)y=x-[x](3)y=tan1x1(4)y=y]x(2-x)(5)y=sin2x(6)y=|sinx|+1cosx\.2.78ᦪy=Ḅ;aᦪ=|/(^)|ay=f(-x)ay=-f(-x)23Ḅ;aOÝ%,%,%Ḅ;ËyḄ;Ḅᐵ.3.78ᦪ஻x),g(x)Ḅ;aJᦪy=g[/(x)+g(x)±|/(x)-gu)|]Ḅ;aOÝyḄ;Ë/(x)ஹg(x);Ḅᐵ.4.ᑡᦪḄ;v(1)y=xsinx(2)y=sin—.X5.âãᦪ1,x>0,y=sgnx=<0,x=0,-1,x<0,JᑖAsgnx,sgn(2x),sgn(j-2)Ḅ;.6.ᑡᦪḄ;:Y(1)y=sgncosx(2)y=[x]-2—9᩽▲ËᦪḄçèឋ§1᩽▲é⚪Ḅë§2ᦪᑡḄ᩽▲1.ᵨQRᑡᦪᑡḄ᩽▲BÇv/ì1.«+■(1)lim—~;I00n~+1ersin”(2)hm------n—>oofiJTবlim“TOO஻3

3(4)“T8]|lim(Jn+1-)(5)H—>00lim”;(6)"->81n..n.lim----(Q>1);n->ooa”..n\lim---n->001+2+3+…+”(9)lim2“TOOn(10)lim($+a~n),a>1.“T8஻2.ᵨQR:3n~+n3(1)lim——-----=is2n-12õNn?+niফhm---------=1“T8஻n-1஻BᏔᦪ,n(3)limxn=\fᐸö”T8H+lnB᜻ᦪ;n3n=3k.3஻+l(4)limxn=3,ᐸö஻=+1(k=l,2,…)a”—>8n2+1.஻n=3k+2.3-y/n+n3.ᵨQR:(1),ᑣ¾]ø᦮ᦪk,ᨵlimJ”->8ফliman=a,ᑣIim|a”|=|al.ÌG¬ᔲᡂú?n->«>"ߟ>8বliman—a,,ᑣýᙠN,ÿ஻>Nᨵa«>b;n—>oo(4)liman=a,4>0,!]lim=\[a.n—>oo“TOOY4.᩽▲Ḅᦋᡂ☢ᔲ!(ᐸ$“&”()*+⊤-.ᙠ”.)পVQO,37V>0,n>Nᔢᨵ\x„~a\<£79Q)Ve>0,37V>0,n>Nᨵ\xn-a\<£7(2)Ve>0,3N>0,9஻ுNᨵ<(M>?ᦪ).4

45.Bx“y“EᦈGHᔲIBᓃEஹBy„/LᦈG!6.Nx^aoo8.Tᑡ᩽▲:lim-…+')7প…1223஻(஻+l)lim(4+—++—!-y);ফ஻T8n-(஻+l)2(2n)211_বlim(+•••+n—\ln2+1y/n2+2J/+஻lim(-+-4+-2n-1ভ••+-----v7…2222"(5)lim(1-cosn7஻q>8(6)lim“T8iim(VTVTVT---V7)7(8)lim[(n4-1)M-nn],08i122n-\im(9)>oo242n135…(2஻-1)(10)lim{246lim|7(11)(12)limyjnInn.9.U~B4EB"E$qᦈGᦪᑡqᦣᦪᑡᑣB஺,,±"E5

5ᦣᦪᑡ7B஺LE]30)ᔲLᦣᦪᑡ!>!10.NS=(q1)",U~B0Eᦣ.11.6%,89…4>ᦪU~limWa7+a<+…+"=max(qd…q”).12.Nlima“=a,U~“T81-[”J(1)lim----=a7஻q>8஻(2)a>0,6>0,IIlim=1.n—>ooY13.ᑭᵨᓫᨵᳮU~limx„.ᙠT(1)x=>J~2,x=y12x_,=2,3,…7l2n1(2)Xj=\Tc>0,x=7c+x»-i»”2,3,…7n(3)4=J(c>0)7n\Y(4)%=L=1+"஻/஻=1,2,….1+K14.¥=a>0,%=Z?>0(aoon?»-><»n15.U~6a஻>0,lim-^-=/>1,lim=0.“TaCU71"Toort+I16.Nlima”=a,U~n—>oo(1)lim%+%+••,+""=“7(Ḅ⌮®⚪ᡂ°ᔲ!)“T8஻(2)6%>0,ᑣlim4q4…=a-”T8Y17.±ᵨ²⚪Ḅ³´U~ᑡᔜ⚪,111[+_+_(1)lim—-----=07n—>oo஻(2)lim#7=1(a>0)7஻T8(3)lim4=176

6(4)=071+J2+-^3+…+\fn~(5)11m---------------------=17஻T8஻(6)lim=a(bn>0),ᑣlim=a."f8b/1->«Y18.ᵨU~ᑡᦪᑡ>¶·ᜧ¹:(1){7Q){஻}(3){Inn};(4)1+W…+L23n19.U~Bx.E>¶·ᜧ¹B»,E>ᨵ¼¹ᑣBx“½>E>¶·ᜧ¹.20.(1)¾¶·ᜧ¹ḄḄ᩽▲᝞À!ÁÂÃᔜÄHឋ!(2)Âö·ᜧ¹¶·¹ḄஹÆஹᖪḄ᩽▲ḄÈ;(3)Âö·ᜧ¹¶·¹ḄÉÊHËḄᔜᑭᘂ.21.ᑭᵨ+=e,Tᑡ᩽▲:஻-8I]n(4)lim“Too§3ÎᦪḄ᩽▲1.ᵨ᩽▲U~ᑡ᩽▲:r—1(3)lim-=—=27TVX-1(4)lim-----------=05x-3(5)limJx2+5=37x->27

7x(x-l)J(6)limXTlx2-l2..xÏlim—---=oo7x—3——x—\(8)lim--=17*fgx+2ÓÔ.X2(9)hm-----=oo7XT00x+\x2-5(10)limV^=l.XT8£qJ2.ᵨ᩽▲Ḅ]ᑣ_`aᑣTᑡ᩽▲..x4(1)hm---------;JO2x"-X-1..x2-iQ)hm---------;—2x"-x-l(X-1)3+(1-3X)বlimKTO×x2-Wভlim——■==—7—IVxJl+x_2rমlim--------713x-3..x2-5x+6(6)lim---------13x2-8x+15rM-1Ïlim---(n,m>᦮ᦪ);limÙÚ(8)14VT-23.N/(x)>09U~:limf(x)=A,ᑣlim=VT,ᐸ$᦮ᦪ஻22..t->RXT%4.U~:lim/(x)=A,ᑣUml/(x)l=IAI,ÝÞßàá.X->XQX->X05.TâᑡÎᦪãᡠ-åḄæç᩽▲0,x>1,(1).f(x)=<1,X=l,ᙠX=1;X2+2,x<1,,1xsinq,x>0,ফ/3)=/Xᙠx=07l+x2,x<0,xl1ব/(x)=-ᙠx=07xl+x291(4)ᙠx=—,n᦮ᦪ:n8

82",x>0,(5)/«=<0,x=0,ᙠx=0.\+x2,x<0,7.ᵨ¼¹éᣚTᑡ᩽▲:(1)limx[~]7I஺’X(2)limxaInx(a>0)7x->(rInr(3)lim—(a>0)7XT+oo££(4)limxx.X—>+»8.Nf(x)ᙠ(a,+oo)²ᓫ²ᓣlimx=+oo,lim/(%஻)=4,TU:limf(x)=An(A>¶·).9.Nf(x)ᙠìᔠX²ᑣf(x)ᙠX²¶Ḅᐙ⌕ᩩñ.ᙠx.wX,஻=1,2,…òlim"(x)I=+8.”q>810.ᑭᵨó⌕᩽▲T᩽▲:sin2xপlimATOx×sinx1ফlim------i஺(sinx)tan3x(3)lim---------sin5x9

92sinx-sin2x(4)limA-*0X3cos5x-cos3xমlim.10tanx-sinx(6)limATOarctanxÏlimKTOxsin4xôlimKTO\lx+1-1V1-COSX2õlimKTO1-COSXCOS(Harccosx),ᙠᜧøஹ(10)lim——---------(஻>᜻ᦪ)7x->0xtanx-1(11)limT71X---4..sinmx/1.Lúûü(12)hm-....(ý,஻>᦮ᦪ)7xTksinnxcosx(13)hm-----,Yr---2(14)limxsin-7A'->-KDX(15)lim[cosV«+1-cos\Tn];X->+a)(16)limsin(ÿJ+1)(஻᦮ᦪ)limfl--(17)X(18)lim(l+஻x)x(஻᦮ᦪ);x->0(19)lim(1+tanx)CMxA->0(20)3x+2(21)lim(■31(22)lim(sinx),anx2(23)limXT610

10(24)lim.-1)11.!"limcosl%&ᙠ.KTOX12.!"limD(x)%&ᙠ(ᐸ*XT.%.(ஹ[1,Xᨵᳮᦪ,X=[0,x4ᳮᦪ.13.5᩽▲XXXhmcos—cos---cos—.:242஻14.ᵨ<=!">(1)?lim/(x)=+co,limg(x)=4,ᑣlim"(x)+g(x)]E+8x->“x->a(2)?lim/(x)=+oo,lim^(x)=A(>0)9ᑣlim"(x)g(x)]=+8.x->aATa15.?limf(x)=A,limg(x)=B,!">lim[f(x)g(x)]=AB.16.!"limf(x)=AḄᐙ⌕ᩩOP>QRSᦪᑡx,->+oo(஻->oo),ᨵ-A(஻-8).17.!"lim/(x)=+ooḄᐙ⌕ᩩOP>QRSᦪᑡX”f/(஻W°°),ᨵA(77->00).18.YZᦪ/(x)ᙠ(0,+oo)[\]^_f(2x)=/(x),`limf(x)=A,!":/(x)=A,xe(0,+oo).§4ZᦪḄcdឋ1.ᵨ<=!"fᑡZᦪᙠ<=gᑁcd>(1)y=\/~x(2)y=—;x(3)y=lxl(4)y=sin—.x2.ᢣkfᑡZᦪḄlmnop"ᐸqr>11

11(1)/(x)=X+—;XX(2)/(x)=-J+X)2'(3)/(x)=cos2-X(4)/(x)=[x]+[-x]ஹsinx(5)(6)/(x)=sgn|xl(7)/(x)=sgn(cosx)1(8)fW=Inxx,1x1<1,(9)((x)=<1,|xl>l;cos—,1xy1,(10)f(x)=•2|x-l|,IXl>1sin7TX,ᡀᨵᳮᦪ,(11)/U)="0,x4ᳮᦪX,Xᨵᳮᦪ((12)/(x)=<-X,X4ᳮᦪ.3.|x=0}fᑡZᦪ4<=(~<=/(0)Ḅ(/(x)ᙠx=0cd:(2)=X(3)/'(x)=sinxsin—xI(4)((x)=(l+xF.4.Y/(%)PcdZᦪ(!"QRSc>0,Zᦪ-c,f(x)<-cg(x)=(/(Al/(x)|cPcdḄ.5.?/(x)ᙠ/ncd(|/(x)|f\x)Pᔲ:ᙠX஺ncd᝞S6.?Zᦪf(x)x=0ncd(g(x)ᙠx=0n%cd(EZᦪḄஹᙠX஺nPᔲcd?/(X)g(x)ᙠX஺n%cd(EZᦪḄஹᙠX஺nPᔲ%cd12

127.!"?cdZᦪᙠᨵᳮnḄZᦪ0,ᑣZᦪឤ0.8.?/(x)ᙠKa,bLcd(ឤ(ᢥ<=!"—ᙠKa,bLcd.9.?f(x)g(x)ᙠa,bLcd,~!"max(/(x),g(x))min(/(x),g(x))ᙠKa,bLcd.10.!">Yyl(a,b)[ᓫZᦪ(?xe(a,b)f(x)Ḅlmn(ᑣPo/(x)ḄWqlmn.11-?/(%)ᙠKa,bL,a?f(x)ᙠa,bLcd(`%&ᙠxwa,b£,/(x)=0,ᑣf(x)ᙠKa,bLឤᡈឤ¥.14.Y/(X)Ka,bL[Ḅ⌴§Zᦪ(gKf(a),f(b)L,!"f(x)ᙠKa.bL[cd.15.Y/(x)ᙠa,+oo)[cd(`0V/(x)4x(x*0),?a,>0,4+i="a")("=1,2,…).5!:(1)lima&ᙠn—>cc(2)Ylim%=/,ᑣ/(/)=/(3)᝞ª«ᩩOᦋ04/(x)0),ᑣ/=0.16.5fᑡ᩽▲>l+.t(2)lim(arctanx)cos—1(3)lim(cosx)x2XTOe'cosx+5(4)hm-------------.J஺1+x+ln(l-x)17.!"^_x3+px+q=o(>0)ᨵ`±ᨵW²³᪷.p§54µ¶·4µᜧ·Ḅ¹º1.|x-0}(»x᪗½5fᑡ4µ¶·Ḅ▤:(1)sin2x-2sinx(2)J--(1-x)1+x13

13বJ'lxlWE;(4)V1+tanx-Vl-sinx;(5)In(1+x)(6)V5X*2-4?ÀVl+7-1(8)e'-1.2.|xf±oo}(»x᪗½5fᑡ4µᜧ·Ḅ▤:(1)X2+X6<ফ4x2+6x4-x5ksing(3)ভx3+1মX2+2X-3(6)x2arctan—.x3.|x-0}(fᑡÆÇᡂÉᔩপo(x2)=o(x)ফ0(x2)=o(x)বxo(x2)=o(x3)(4)(5)(6)o(x)=O(x2).4.~!fᑡᔜ⚪>3(1)xsin\/~x=0(x^)(x7()+)ফ2x3+2x2=0(x3)(x—>co)বo(g(x))±o(g*))=o(g(x))(x-%);(4)o(x"')+o(x")=o(x")(X->0),/H>M>0মo(xm)o(xn)=o(xm+n)(X->0),/H>/I>0.5.!"fᑡᔜÇ>পtanxx(x—>0)14

14(2)arcsinxx(x—>0)(3)arctanxx(r—0)1ஹ(4)1-cosx—x"(x—>0)2(5)cx—1x(x—>0)(6)(l+x)a-1ax(x-0),ᐸ*awO.6.ÑᵨÆÒ4µ¶·5᩽▲>c12arctanW(1)lim-------zooX-COSX—1(2)hm---------XT°1-cosx(4)lim^—.XT°xsinx7.Yf(x)g(x)(x->x),!">0fM-g(x)=o(f(x))ᡈ/(x)-g(x)=o(g(x)).8.Yx-^a}(/1(x)f(x)ÓÆÒ4µ¶(&(x)g2஺)PÆÒ4µᜧ(`2\imf(x)g(x)&ᙠ(5!22limf(x)g(x)=limf(x)g(x).KTaxIKT"22Ö×ØᖪØᑖ§1ØᖪᭆÜÝᐸÞß1.5àᱥây=fᙠ4(1,1)n3(-2,4)nḄᑗâ^_äâ^_.1)2.?5=-/gå(5(1)ᙠ1=1,1=1+ælḄçᙳéê(Y4=1,0.1,0.01)(2)ᙠf=1Ḅë}éê.3.~ì<íây=InxᙠîïnḄᑗâçðñfᑡòâ>(1)y=ó-1(2)y=2x-3.15

15x2,x>34.Y/a)=ax+b,x<3,~ì<Ḅ(/(x)ᙠx=3ᜐõö.5.5fᑡíâᙠᢣ0,ফ/(x)=]x<0;"isin—xw07.YZᦪ/(x)={xx'(m᦮ᦪ).0,x=0~>(DmÆñS}(/(x)ᙠx=0cd(2)mÆñS}(/(x)ᙠx=0õö;(3)mÆñS}(/'(x)ᙠx=0cd.^(x)sin—,xwO.8.Yg(O)=g'(O)=O,/(x)=Jx0,x=Q.5.0).9.!">?å(X஺)&ᙠ(ᑣ]æ/(/+¶)W/(*஺W.)=/'(X).0-2Ax10.Y/(X)P<=ᙠ(-00,+00)[ḄZᦪ(`QRûX[/2€(-8,+8),ᨵ/(ý+x)=/(x)/(x).212?f'(0)=1,!"Rûxe(-00,+00),ᨵf\x)=f(x).16

1611.Yf(x)PᏔZᦪ,`ÿ(0)ᙠ,/(0)=0.12.f(x)᜻ᦪ/'(%)=3,/'(/).13.ᵨ!ḄᏔᦪḄ!ᦪ᜻ᦪ!Ḅ᜻ᦪḄ!ᦪᏔᦪ.14.%ᑡᦪḄ!ᦪ(1)y=x2sinx+(2)y=xcosx+3x2+(3)y=xtanx-7x4-6+(4)y=exsinx-7cosx4-5x2+(5)y-4>/x+--2x3+x7(6)y=3x+Syfx4——+x'14-X2(7)1-X2](8)y1+X+x~X(9)(l-x)(2-x)(12)y——~r=+\[x+3yjx(13)y=x3Inx--xn+n…ஹcosx11(14)y-——In—+xx(15)y=(x4--)Inx+x…ஹxcosx-lnx(16)y=------------+x+117

171(17)y=--------+X+COSXxsinx+cosx(18)y=—:----------+xsinx-cosxxex(19)y=------+sinx(20)y=xsinxlnx.15.%ᑡCᔠᦪḄ!ᦪ:(1)y=(x3-4)3+(2)y=x(a2+x2)>Ja2-x2+(5)y=ln(lnx)+a+x(6)y=—In2a-x(7)y=ln(x++x2)+x(8)y=Intan—+2(9)y=cos(cosVx)+(10)y=cos3x-cos3x+(11)y^-^=Ve'3x'F(12)y=arcsin(sinxcosx)+(13)y=arctan——H1-x2(14)y=e~x+2x+IIl(x+2)(x+3)15)y=in--------——;Vx+118

182(16)y=e2xsin3x+—+/ஹsincoxJஹLMFஹ(17)y=---------(k,6yKLᦪ)+1+x(18)y=xyla2-x2+^:+77^7(19)y=sinz,xcosnx+Jl+X-yj\-X(20)y=In,---.--.yjl+X+Jl-X16.ᵨPᦪ!Q%ᑡᦪḄ!ᦪ(1)y=xj---+Vl+x/ஹ//1+Xফ>'=i-A1------T+1—xVl+x+x(3)y=(x+y/1+x2)M+(4)y=xx,(x>0)+(5)y=xInr,(x>0)+(6)y=(l+x)x,(xு0)+(7)y=xtanr,(x>0)+(8)WX"Z"(஻>()).17./(x)Px!Ḅᦪ\dxপ>=/஺2);(2)y=f(ex)efM<বJ=/(/(/«)).18.p(x)c/(X)Px!Ḅᦪd:dx(1)y=e(x)+஻2(x)+19

19(2)y=arctan0")(஻(x)w0)+W(x)(3)y=YZ஺)(஻(x)>0,/(x)w0)+ভ)=log>*“(x)(஻(x)>0,^(x)>0,9(x)w1).19.%ᑡᦪḄ!ᦪ(1)y=eax(cos/?x+sinbx)+12(2)y=xarctanx-—ln(l+x)+Jl—-2—12x(3)y=arctan----------+arctan-----+7x\-x(4)y=arctan(tan2x)+y=(»•&(o(a,/?>0)+bxa/[xc7a•x/Jஹ(6)y=—\a-x+—arcsin—(a>0)+Inx+yJa2+x(«>0)+y=ln(arccos(9)y=x1'"+ax+apaு0q+(x+l)212x-l(10)y=—In+arctan6x?—x+1J3§2rᑖᭆuvᐸxy1.%ᑡᦪᙠᢣ{Ḅrᑖ(1)y-axn+a_x"~'+',,+ax+a,dy(0),dyপ;nnil0ஹ71(2)y=secx+tanx,dy(0),dy(—)cdy(/r)+4]x(3)y=—arctan—,dy(0)dy(a)+20

20(4)y=—4--^-,dy(O.l),dy(O.Ol).xx2.%ᑡᦪḄrᑖஹx(zI)(2)y=x

21x-x<(3)y=yjx-+-

22x---j=+(4)y=arcsinVl-x2(5)y=e"2+(6)y=Intan(—+—).243.஻/xḄrᦪdy/ஹ஻(1)y=arctan+v(2)y=ln7w2+v2+(3)y=lnsin(w+v)+(4).=/1=J/+.24.%ᑡᦪḄrᑖdy(1)y=sin2t,t=ln(3x+1)+(2)y=ln(3/4-l),r=sin2x+(3)y=e3u,u=—Infj=x3-2x+5+(4)y=arctanu,u=(lnr)2,r=14-x2-cotx.§3◚ᦪᦪrᑖQ1.%ᑡ◚ᦪḄ!ᦪᒹ:dx21

2322(1)—7+77=1(஻/Kᦪ)+ab(2)y2=2px(pKᦪ)+(3)x2+xy+y2=a2(QKᦪ);(4)/+W3=஺+(5)y=x+—siny+(6)x3+y3=a3(aKᦪ);(7)y=cos(x+y)+(8)y=x+arctany+(9)y=1-ln(x+y)+ey+(10)arctan—=In^x2+y2.x'2.%ᑡᦪḄ!ᦪx=---1+(1)\y=cos-tx-e2tcos17/•2[y=esinttভx=6z(lntan—+cosr)y=asint3.ᦪy=y(x)ᙠᢣ{Ḅ!ᦪ:(1)y=cosx+^siny,(y,0)+(2)yex+

24y=1,(0,1)+y=1-cosr,222

25+V2ᙠ=J,Jᜐ.y=1,234.•ᙊ┵ᘤK10m,☢Ḅ⚔ᙊK4m.(1)ᐭḄVP☢஻Ḅᓄ᳛+(2)VPᘤ¢☢ᙊRḄᓄ᳛.5.ᑐ=acos"y=asin”.(1)y'(f)+(2)¦§Ḅᑗ§©ᙶ᪗¬ᡠ¢Ḅ®Kᦪ.6.¦§¯,°{ḄQ§ᑮ²{Ḅ³´ឤ¶·a.y=a(sinf-fcost)§4▤rᖪ▤rᑖ1.%ᑡᦪᙠᢣ{Ḅ▤!ᦪ(1)/(X)=3X3+4X2-5X-9,/"প/"'পJভপ;X(2)/(%)=-==,^/"(0),/"(D,/"(-1).,/I•2.%ᑡᦪḄ▤!ᦪ:(1)y=xlnx,y"+(2)y=e",y"'+(3)”¾»;(5)y=x56cosx,y0°)+(6)y=x3-~~-,»3.%ᑡᦪḄn▤!ᦪ(1)y=¼+(2)y=Inx.4.%ᑡᦪḄn▤!ᦪ:23

26](1)x(l-2x)(2)y=sin2x+1(3)y=---------•X2-2x-8(4)y=—+xix+2(5)y=In----+1-x(6)y=2AInx.5.Ḅᔜ▤!ᦪᙠ,y”vq».(1)y=/(x2)+(2)y=/(-)+X(3)y=3)+(4)y=/(Inx)+(5)y—.6.À/(x)=k',f")(0)=0.0,x=07.%ᑡᦪḄX▤rᑖপy=3+7x(2)y=xarctanx+(3)y=f(w)=e",஻=(p(x)—x2.8.%ᑡᦪḄH▤rᑖ(1)஻(x)=lnx#(x)=",J3(wv),J3(—)vIu(2)஻(x)=¯2/(%)=cos2x,/(-'[().9.ÅᑡᦪḄX▤!ᦪ:24

27x=2t-ry=3t-t3x=acost(2)

28d2xÈᦪx=x(y)ËÌ-=1,ÏÐÑZy=y(x).dyÒÓÔrᑖÕÖᳮvØᵨ§1rᑖÕÖᳮ1.(1)X3—3X+C=0(cᦪ)ᙠÙÚ[0,1]ᑁÜÝᨵßÜàḄá᪷+(2)xn+px+q=0("Kä᦮ᦪKáᦪ)æ஻KᏔᦪçèᨵßá᪷+æ஻K᜻ᦪçèᨵHá᪷஺2./(x)=x"'(l-Kä᦮ᦪxe[0,l],ᑣᙠJw(0,l),êm_Jn1-J3.ØᵨëìᨽîÕÖᳮ%ᑡܶï(1)|sinx-siny|<|x-y|,x,ye(-oo,+oo)+(2)|x|<|tanx\,xe(-/ñ),¶òᡂôæõæx=0+(3)e*>1+x,xw0;(4)y~X0.l+x24.ᦪᙠ{aᐹᨵ÷øḄX▤!ᦪ/(./0/(.-/Q-2/(.)lim++ú-0û2J'/5.lim/(x)=a,°ü7>0,ᨵXT+00Um[/(x+r)-/(x)]=Ta.X->+ao6.ᦪ/(x)ᙠ[a,ᑗ!ᐸÕa20,ᙠJw(a,6),êþ2ÿ/3)—/(஺)]=(஺2)/).7./(x)ᙠ(a,+8)+lim/(x)=lim/(x)=A஺!"ᙠ§G(a,+8),v_i.z»vߟkm26

29+fC)=o஺8./(x)!/(x)ᙠ/01234ᨵ/(x)+f(x)Ḅ01.9.8ᦪ/(x)ᙠ:▬<=>◀:1᜜limf(x)=A,!/'(%)"ᙠf(Xo)=A.10.F/(x)ᙠG%HIJ/'(஺)K/'(b)23ḄMNᦪᑣPQ"ᙠ1Jw(஺,:_f&)=k.11.8ᦪ/(x)ᙠ(aT)ᑁ/'(X)ᓫWX/'(X)ᙠᓃ)=>.12.F8ᦪ/(x),g(x)KT([ᙠ\a,b]=>,ᙠ(a,b)X"ᙠ^€`,T),+af(a)g(a)h(a)f(b)gS)k(b)=0.fG)g'C)/)13./(x)ᙠ(8,+8)=>lim/(x)=4-00,X!/(x)ᙠ(8,+0஺)eᑮX->±O0jḄᨬlm.14.f(x)ᙠ஺T)=>,lim/(x)=B.x-^b(1)F"ᙠX]e\a,b),+/(X1)ுB,ᑣ/(x)ᙠ\a,6)rᑮᨬᜧmt(2)᝞v"ᙠᑁe\a,b),+/(xJ=B,wᔲyz/(x)ᙠ\a,b)rᑮᨬᜧm?15./(x)ᙠ\a,+8)ᨵ}f(x)"ᙠlimf(x)=/?.ᓃ=0.16.:arcsinx+arccosx=l1).§2ᑖm4ᳮᐸᵨ1.^ᑡ4Ḅ᩽▲:ஹ..tanax(1)lim-----;i°sinbx1-COSX2(2)lims0x3sinx27

30ln(l+x)-x(3)hm-----------;♦0cosx-1/,ஹ1.tanx-x(4)hm---——;;3°x-sinxIncosax(6)lim--------ioIncos/7x..tanx-6lim---------secx+52X(9)limQr—x)tan—;XTn2(10)lim/%;,V->1X(11)lim——(a,b>0);x—>+coe"71---arctanx(12)lim2------——;sin—xlncX(13)lim——(b,c>0);(14)limx"In'x(b,c>0);x->0+1-2sinx(15)hm---------x—cos3x6..Inx(16)lim----;XT஺’cotx(1+x)x-e(17)limA—>0x(18)lim"t10+(19)lim|In—A->0+X28

31limv->0lim.v->0x2sin2xlimsinxlnx.10+2.8ᦪf(x)ᙠ\0,x]ᵨᨽ¢m4ᳮᨵ/W-/(O)=7'(^)x^e(O,l).¥^ᑡ8ᦪ¦ᑣ=2প/(x)=ln(l+X);(2)f(x)=e\3./(x)¨▤!lim"x+2஻)_2ஹ(x+/7)+2(x)/»->0T24.^ᑡ8ᦪ«wᵨ¬r®ᑣ᩽▲!2♦1xsin—(1)lim------;♦0sinx/0vx+sinx(2)hm--------;*°X-COSX2x4-sin2xlim------------(2x+sinx)*±x§38ᦪḄᓣ³ஹ´ឋK8ᦪ¶·1.ᵨ8ᦪḄᓫWឋX^ᑡ«¸¹:(1)—x

32x(3)x-----0;(5)2>3----,x>1.2.»4^ᑡ8ᦪḄᓫW¼3!(1)y=x3—6x;(2)y-yjlx-x1;(3)y=2x2-Inx;(4)y=X;x(5)y=2x2-sinx;(6)y=xne~x(«>0,x>0).3.^ᑡ8ᦪḄ᩽m!(1)y=x-ln(l+x);(2)y=x+—;l+3xy=."+5/(Inx)(5)y=2x3-x4;12(6)y=arctanx——ln(l+x).4.JO)=<(1)X!x=0½8ᦪḄ᩽lm1t(2)¾Xᙠ/Ḅ᩽lm1x=0ᜐ½ᔲÀÁ᩽mḄÂᐙᑖᩩÅᡈ¨ᐙᑖᩩÅ.30

335.X!F8ᦪ/,(X)ᙠ1/ᜐᨵf+(Xo)/(X)g(x),>0.f(x)g(x)!/(x)=0Ḅ/N᪷234ᨵg(x)=0Ḅ᪷.9.»4^ᑡ8ᦪḄ´ឋ¼3:Ø1!(1)y=3x2-x3;(2)y=x2+-;x(3)y-ln(l+x2);(4)y-Jl+f.10.XÚÛy=ᨵÜJÝÞÛḄßÔØ1.11.Îa,஻HàmÐ1(1,3)HÚÛynad+bfḄØ1â12.X!(1)F/(x)H^´8ᦪ/IHãäNᦪᑣ/l/(x)H^´8ᦪt(2)F/(x)ஹg(x)ᙳH^´8ᦪ,ᑣ/(x)+g(x)H^´8ᦪt(3)F/(x)H¼3/Ḅ^´8ᦪg(x)HJḄ^´⌴ç8ᦪᑣgo/(X)HIḄ^´8ᦪ.13./(X)H¼3/è´8ᦪX!FX஺€/Hé(X)Ḅ᩽lm1ᑣX஺H/(X)ᙠ/êḄ᩽lm1.14.ᵨ^´8ᦪᭆìX᝞^«¸¹:(1)MíNᦪ஺T,ᨵ31

34”<-(ea+*);2(2)Màãä8ᦪ஺T,ᨵ-a+b,2arctan---->arctana+arctanb.215.᝞à⌱ïðᦪT>0,Òw+ÚÛ_Lἕ2ycᙠX=±b(஺>0Hó4Ḅôᦪ)ᜐᨵØ1.2X16.y—Ḅ᩽mØ1ÍØ1ᜐḄᑗÛÒÓ.%2+117.¶Ì^ᑡ8ᦪḄ·ö!(1)y=x3-6x;(2)y=e-"T)2tব>=x—1.1+X(4)y=in----;1-x(5)y=y=x-2arctanx;(6)y=xe~x;-2x-3y=x2+1(x-1)3.(8)(X+1)3'X4(9)(1+X)3§48ᦪḄᨬᜧmᨬlmÎ⚪1.^ᑡ8ᦪᙠᢣ4¼3Ḅᨬᜧm:ᨬlm(1))=5É4+5/+1,[-1,2];32

350஻(2)y=2tanx-tan**x,[0,—);(3)y=Vxlnx,(0,+oo);(4)y=|x2-3x+2|,[-10,10];(5)y=eஹ3|,[-5,5].2.ó4ûH/ḄÛü¥ýjᑖᡂ/ü+ÿᡠᡂḄ☢ᨬᜧ.3.ᵨᘤ஻!"ᦪ$%,',…,%*+,᪵Ḅᦪ.x⊤1ᡠ⌕Ḅ3.45678஻9ᦪ:;Ḅ<=>ᨬ?.224.BᑁDEFᙊH+J=1M<Eᙶ᪗PḄ☢ᨬᜧḄ.ab5.RM(p,p)ᑮXᱥZy2=2pxᨬ\]^.6.`a9ᙊb┡᮱efghVj☢ᩞᧇḄmᓫo☢pqaᐗ.sᩞᧇḄmᓫo☢pqᓃᐗ*┡᮱Ḅuv8wḄxyEz{⌼pᨬḕ~7.᩟ᑜaᩩ☢☢4஻/Ḅ⍝s☢Ḅᚁ(ᓽ8w43ᜳ6tan6==),88w/zᕜᨬ?.(᪷$"ᕜᨬ?⍝45¡ᨬᜧ.)8.¢£Ḅ¤a,¢¥Ḅ¦§%஻?/s,¢£ª«¬R¢ª«f=0,°±²³¡¢¥Ḅ´µ=¶·x=tvcosa012y=tvsina--gfoº¦§%°»*᝞½¾᦮¢£Ḅ¤a,6¢¥À¶ᨬÁ.!"#ᑖ§1°ÃᑖḄᭆÆ1.BÇᑡ°Ãᑖ·(1)|(x5+x3-^-)dxÊ(2)j(5-x)3dxÊ33

36(3)J(V^+i—+q-)dxpdx(4)J7(177)r3x2(5)L+JdxÊ(6)J-dxÊ(7)j(2sinx-4cosx)rfxÊ(8)J(3-sec2x)dxÊ(9)J(tan2x+3)JxÊ2+sin2x(10)dxÊcos2xtanx(11)——dxÊ2X.cos—sin22,cos2x(12)■dxÊcosx-sinxdx(13)I1+cos2x(14)J(5V+1)2JXÊ(15)J(2+(16)21f(17)^Xyfxdx;(18)(19)\22x3xdx<34

37-3+sinx)Jx.(20)"a"2.Ba×Zy=/(x),7ᙠR(xj(x))ᜐḄᑗZḄ᳛2x,ÜÝR(2,5).3.ef/(x)ÞÃḄᐵàáâB/(x)·(1)xf\x)=1(x>0)Êফ=1(x>0)ÊXব/(x)/,U)=l(x>0)ʧ2ᣚᐗᑖç8ᑖèᑖç1.ᵨéêᑖçBÇᑡ°Ãᑖ:(1)ᓰX(2)(3)~-----dxÊ+1+7x^1-^=+-=!=MX(4)T?;yj3-x2Vl-3x2(5)——-~rdxÊ2+3-(6)e2dxÊ(7)xe~xdxÊ(8)dx<1+e*rdx(9)'ex+e-x+2-X(11)jtanxdxÊ35

38(12)jtan5xsec2xdxÊrl-2sinx.(13)-----—dx

392.ᵨᣚᐗᑖçBÇᑡ°Ãᑖ:(1)^y/x2-a2dx<(2)(3)[X=dxÊzV5+x-x2(4)^2+x-x2dxÊ(11)[.A=dxÊy/l-x2fd+2(12)'(7+17dx.3.ᵨᑖèᑖçBÇᑡ°Ãᑖ:(1)jx2cosxdxÊ(2)jx3Inxdx·(3)jinxdxÊ(4)[arctanxdxÊ37

40arctanxdx(5)Jl-x(6)\xarctanxdxÊ(8)jcos(lnx)dxÊ(9)jsec5xdxÊ(10)Ê(11)jxsin2xdxÊ(12)jxcos2xdxÊ(13)j[ln(lnx)4--——]dxÊ(15)J(arcsinx)2dxÊ/÷rx,(16)——Ê—dxÊJsin-x(17)jln(x+V1+x2)dxÊ(18)JVxIn2xdx.4.BÇᑡ°ÃᑖḄ⌴ùúá:(1)/,,=(2)I=j(lnx)ndxÊn(3)I=JtanMxdxÊn(4)I=j(arcsinx)wdr.n5.BÇᑡᨵᳮþᦪḄ°Ãᑖ:fX54-X4-8(1)Jx3-xdxÊ38

41dxdxÊ(x+l)(x~+1)2(3)fxdxJl-x**4dx(4).dx:1+x3rx—2(5)'x2-7x+12dxx+4(6)dx—l)(x+2)dx(7)MT+x2x-3(8)dx+2x+1dx,—--------dxx+4x+2dx(10)dx.8—2x—6.!ᑡ#$ᨵᳮ'Ḅ)ᑖ:(1)J4+5cosxrdx(2),5+4sin2x(3)J2+sirrx,ஹrsecxdx(4)I---------J(1+secx)dx(5)1+tanxdx(6)(2+cosx)sinx/ஹrsinxcosx,(7)-----------dx

42dx(10)J•Jsinxcosxrcosxdx.(11)---------------dx<7sinx+2cosxrsin2x(12)dx.J1+cos2X7.!ᑡ8ᳮ9ᦪḄ;<)ᑖ:dx(1)■dxx(l+24+=)xdx1+xx2xdx(10)8.!ᑡ;<)ᑖ:dx(1)yJ(x-aXx-b)dx(2)x2y^ax2+P(3)xexsinxdx40

43(4)^xexcosxdxdx(5)sin(x+஻)sin(x+/?)(6)jtanxtan(x+a)dxrx3arccosx,—.dxJVT7rtanx,-------------dx<•U+tanx+tarrx/Bஹfx+sinx.(10)dx0).2.`/(x)ᙠV஺+c,b+c[R)Sbc/(x+c)ᙠVa,bLQR)Sd41

44(f(x+c)dx=f"f(x)dx.J(iJa+c3.`“USx=c,ce(a,b),f(x)=<0,xea,c)0,/(X);ឤw,bcVf(x)dx>0.2.`/(x)ᙠVa,SS/2(ᑜ=0,bc/(x)ᙠVa,ᑗQឤw.3.c/2(x)ᙠ3,ᑗR)S/(X)ᙠiSᑗ;R).4.!ᑡᔜ<)ᑖḄᜧ(1)Jxdx,fx2dxᐔফFxdx,fsinxdxবdx,^'dx.5.bc!ᑡ;'(`ᡠḄ)ᑖᙠ)(1)Iwje'dxWeফ14¡7171ব—<<2-7F3"*=6.(4)*)Jv42

456.bc(1)limf——dx=O<—£1+¤7C(2)limpsin"xdx=0.n—J)7.`f(x),g(x)ᙠ3,,bc¦£/©©(ᓽ«=f/(x)g(x)dx‘i=lᐸ஺=/<᳝<<%=bZ=¯y;_[,஺S4£[x“Sx/(i=1,2,S஻),2=max(Ar3.18.`/'(x)ᙠ[a,Sd/(a)=0,b|f/(x)dr|<-^-max|/'(x)|,9.`0

4613.`/(x)ᙠV0,1[S/(x)>a>0,b:14.`y=e(x)(xN0)YÏÐᓫÒÓ=Ḅ9ᦪS0(O)=O,x=0(y)YuḄÙ9ᦪSbc(᜛(x)dx+10(y)dy2ob(a>0,&>0).15.ᵨyÖ

47বlimgrfJ஻y(4)lim—yln(n+1)•••(2/7+1)"f8n3.h/(x)S(x)(1)/(x)=[7áâ(2)ã(x)=f(3)F(x)=£e'dt4.!ᑡ᩽▲fcost2dt(1)lim“TooX(2)lim,…£5.`/(x)ᙠV0,+8)dᓫÒ⌴ÓSb9ᦪXᙠ(0,+8)QdᓫÒ⌴Ó஺§4<)ᑖḄÛÜ1.ÛÜ!ᑡ<)ᑖ2(x+l)(x2-3).f(1)-----Þ----dx<13x245

48^4-x2dx:ম(6)^x2>Ja2-x2dxnÞsinmxcosnxdxdx°(x2-x+l)3/2Sexdx4r)i+Vi+7(10)c-cosx(II)2Jl+sinx(12)fxarctanx6k(13)(14)jx2cos2xdx(15)[x2cos2xdxåæ-஻(16)(17)[sinmxcosnxdx(18)\--dx(6/>0)VQ+X0(19)L—(20)px3(l-5x2),0Jx2.ÛÜ!ᑡ<)ᑖপPsin9xdxফjsin,xdx(3)j"cos6Mx46

49mভÞcos7xdx(5)£(a2-x2)"dx(6)“I-”—3.bcḄ᜻9ᦪḄyᑗê9ᦪḆwᏔ9ᦪSḄᏔ9ᦪḄê9ᦪᨵdíᨵyow᜻9ᦪ.4.`/(x)ᙠᡠîOPQY9ᦪSbc:পf/(sinx)dx=F/(cosx)dxফÞx/(sinx)dx=~/(sinx)dx2/a9ஹdxব(4))//S)dx=^xf(x)dx(a>0)5.ÛÜ)ᑖp———dx.#cosx4-sinx6.ᑭᵨᑖñ)ᑖòbc:1f(4)(x—ll)du=f[f(tytdu7.`/"(x)ᙠ[a,b]Sd/(a)=/S)=0,b:(1)f/(x)dx=f/"(x)(x-a)(x-b)dxফ|ff(x)dx<("0max|/"(x)||]2a

50lim-[f(t)dt=IX->OCXJo§5<)ᑖᙠᱥᳮḄùᵨúû1.ᨵyↈ᱐•+4413ுöSþÿᔣᐭḄ.a~b~2.ᜧ᫑᫑⌕ᐜ஺!ᙊ#$Ḅ%&20m,*27m,,-☢3m,⌕01234567ᡠ9Ḅ:஺3.;<Ḅ=>?@$AB6m,B2m,,10m,EF=>ᡠ⌕Ḅ஺!ḄG7&\000kg/m3.4.%&rḄᳫKᐭLM☢NOᳫḄG7&1,PQᳫRS-⌕9TU:V5.0XYZ[ᡠ◤ḄMXYḄ][ᡂ_G஺`aḄbcXY][1cm,e0XYZ[10cm⌕9TU:V6.ᨵ[&aḄhiLᙠᔜlᜐḄnopMNq;rlḄqstᡂ_GuhiḄtᙳop.§6wxᑖḄz{341.|a=~0xᑖ0,1ᑖᡂ10ᑖ'ᑖᵨ@$ᱥn34Ḅz{ᑮᦪl.2.0xᑖ10ᑖᵨᱥn34ᑡxᑖḄz{ᑮᦪl(1)f(2).ᦪ§11.ᑏ-ᑡᦪᙠx=0Ḅ£¤¥¦§⚗Ḅ©ª(1)e2x¬2(2)cosX;(3)In(l-x)¬(4)—¶¬(1+x)48

51+2x+1(5)-x-1(6)sin3x¬x¸2ᑍ24-x—1.1+x(8)In-----l-2x2.ᑏ-ᑡᦪᙠx=0Ḅ¿ᡠᢣḄ▤ᦪ:(1)ফIncosx,(x6)¬(3)sinx(4)3.ᑡᦪᙠ%=1Ḅ©ª:(1)Inx¬ফবP(x)=Ä-2x~+3x+5¬4.wÆᦪ஺b,cxf0(1)/(%)=(஺+஺È05])5111ᐗË&ËḄ5▤ÌÍ;/(%)=/ᓃÏ&xḄ3▤Ìͬফ1+bx5.ᑭᵨ᩽▲fl11r(1)lim--------¬sinxyJ-l-dফlimX->00sin62xবlim஻+—In1+—2y

52l-cos(sinx)ভlim---------z—Xfoo21n(l+x2)49

53(5)lim(Wx+3x--2x)¬!/(x)ᙠÚlḄÛܶÝÞßà/(0),/,(0),/"(0)¬limx->0!/(X)ᙠâãAäåÝÞßæ/(x)=/(x2),ç:è=0,é@2=5(2஻)ên\8.!P(x)&nÝT⚗(1)P(a),P'(a),…í(”)3)Ḇ&_ᦪçðP(x)ᙠ(a,+8)AÌ᪷¬ফò(2'(^…?(”’(_ö÷NçðP(x)ᙠ(—8,a)AÌ᪷;9.ç(2)e?Ìᳮᦪ¬10.!/(x)ᙠa,úAᨵ¶▤ßᦪ,à/'(a)=/0)=0,ᑣüᙠce(a"),c11.!/(x)ᙠal▬z¶ÝÞßà/"(a)#0,ᵫᑖᳮ:f(a+/i)—f(a)=f'(a+0h)h,0lhmO--20212.ᦪ/(x)ᙠa,#$ឤᨵf'\x)o0,ᑣᙠ(ᑗᑁ+,-./(/)+/(஽)ு,x,+xf22~J250

54§26ᑖᙠ789ᱥᳮḄ<ᵨ1>ᑡᔜABᡠDᡂḄFG☢6(1)V=4(x+l),V=4(l-x);(2)yTlnxl,y=O(0.1ᑡᵨ᩽ᙶ᪗⊤^ḄABᡠDFGḄ☢6(1)_`BaZ=a2cos2(p\(2)efgᴮBr=asin3(p;(3)iBr=acos0+b(b>a).3.>ᑡᵨjᦪkl⊤^ḄABᡠDFGḄ☢6(1)m=2,nay=2ana°;(2)᤮Bx=a(f-sin/),y=a(l-cosr)(00.4.yBy=x}~ᙊf+3y2=6)Ḅ☢6ᑖᡂ-ᑖA(Ḅnᙽ)8(Ḅnᙽ).B5,r=3cos஻r=1+cos஺ᡠDḄᐳᑖḄ☢6.6,>ᑡḄ6X2y2(1)~ᙊ+4=1sWab(2)y=sinx,y=0(0

55পxs(ii)ysW(3)Bx=a(t—sint),y-a(\-cosr)(0ᑡᔜA⊈ᡠDᡂḄ78Ḅ6(1)┵Ḅ6ᐸ$>Ḇ~ᙊ~ᙊḄsᑖ¡A,8a,b,¢£h<(2)¤ᙊ¥ᐸ$>ᑖ¦x§aஹbḄᙊ¢ᐸḄª«/?.8.®ᳫx§R,±£/?Ḅᳫ²6(/?WR).9->ᑡABḄµ(1)y=x2,00,00);(7)½¾Br=a(l+cos0),Q<00.10.>ᑡᔜABᙠᢣ.ḄA᳛A᳛x§(1)xy=4ᙠ.(2,2)W(2)ஹ=111Áᙠ.(1,0).11.>ᑡABḄA᳛9A᳛x§(1)ÂᱥBy2=2px(pு0);x2y2(2)_ABÄnÄ=1Wab222(3)·GBᡝ+ᡝ=½W12.>ᑡjᦪklÆÇḄABḄA᳛A᳛x§(1)Bx=a(f-sin/),y=஺(1ncost)(a>0);52

56(2)~ᙊx=acosf,y=bsinf>0);(3)ᙊḄuvBx=a(cosf+tsinf),y=a(sint-tcost).13.>ᑡÉ᩽ᙶ᪗⊤^ḄABḄA᳛x§(1)½¾Br=a(l+cos6)(a>0);(2)_`Br-2a2cos20(a>0);(3)ÊᦪËBr=a*(2>0).14.ÌAB¦ᵨ᩽ᙶ᪗klr=")ÆÇÍÄ▤ÏÐÑᙠ.6ᜐA᳛0lr2+2r'2-rr"lK=------------3—-(r2+r'2)215.ÂᱥBy=a/+Ô+ᙠ⚔.ᜐḄA᳛x§ᨬ.16.ABy=2(x-1-ḄᨬA᳛x§.17.ABy=e*$A᳛ᨬᜧḄ..18.>ᑡÙ☢ABsᡠÚA☢Ḅ☢6(1)y=sinx,0Wx4ÛxsW(2)x=a(r-sint),y=a(l-cost),a>0,06)XsWa~b~(4)x=acos,y=asir?fxsW(5)r=2a2cos2஺᩽s.•19.>ᑡABßḄà½(1)x§r,µá(a44)ḄᙳᒴᙊµW2(2)ÊᦪËB=(஺ு0,ä>0)$ᵫ.(0,஺)ᑮ.(஺/)ḄᙳᒴµßW(3)ÉA(0,0),3(0,1),C(2,1),DQ,0)⚔.ḄæGᕜèAB$+n.Ḅéê¡ë.ᑮì.ª«Ḅ2íW(4)x=a(f-sinf),y=a(l-cosf)04f42Û,a>0,éêîᦪ.53

5720,®ÂᱥBßy=f(_l4x«l),ABß$+n.ᜐḄéê9ë.ᑮysḄª«ᡂ¤ðx=lᜐéê5,ñABßḄàò.21.s10m,éêᑖôp(x)=(6+ᑖô)kg/m,ᐸxªsḄn÷ø.Ḅª«sḄàò.22.xᳫ04z«J஺'—/n:2Ḅà½23஺┵+Ḅà½ZsḄùúò.24.Âᱥû+)>2«%஻Ḅà½zsḄùúò.§36ᑖklüý1.>ᑡᑖklḄþÿ:(1)xy'-y

58y=0;(3)3x2+5x-5y'=0;(4)xydx+(x2+l)dy=0;মy—xy'=a(y2+y)(6)(y+3)dx+cotxdy=0;=10ᔩax(8)xsecydx+(x+\)dy=0;(9)(ex+y-ex)dx+(ex+y+ey)dy=0;(10)yInxdx+xInydy=0.2,!"#ᑖ%&'()*ᩩ,Ḅᱯ/:(1)?sinx=ylny,y|=e

59axx=2ফy5=e2",v|=08x=054

60(3)^--^-Jy=O,y|=1-1+y1+xx=஺3.=>?1gḄ=ABCDᵨDFGHI5JCKLMᡂOP5K=AHIḄQRᡂSP5ᙠf=10sL5QRVW50cm/s,C?4X10-5N.\]HI^*_`abᑖcdḄQRefgh4.iḄ⊦kᨵ᝞nḄopqiḄ⊦kQRriᡠtuḄ>RᡂOP5w_xᩞᧇ{|,i_`1600}d5~*>R஺Ḅb5iḄ>RrLMfḄᦪᐵ.ᦪ§1ᦪឋḄV1.ᦪᑡJnḄஹnq(1)x=1--8nn(2)X„=H[2+(-2)"];ব=%5஽*+1=1+1¡=L2,3,…);k"+1(4)x„=[1+(-1)-]—;n(5)=Vl+2n(-1)5,;n-\2nᐔযx“=--cos--.n+132.¨/(x)ᙠ஺|©5ª:(1)sup{-/(x)}=-inf/(x);xeDxw஺(2)inf{-/(x)}=-sup/(x).9xeD3.¨/=supE5±᜛eE5ª³E´µ⌱·ᦪᑡ{x஻}±¹º»¼½5¾limx஻=(3q஺GE,ᑣÀÁ᝞Âh4.ªᦈÄᦪᑡÅᨵKn5ÆW+8ḄᦪᑡÅᨵn5ÆW-00ḄᦪᑡÅᨵ.5.ᑖÇÈÉ'(nᑡᩩ,Ḅᦪᑡq(1)ᨵÊnḄᦪᑡ8(2)ËᨵÌ»ËᨵnḄᦪᑡ8(3)ÍËᨵÎËᨵnḄᦪᑡ8(4)Í»ËᨵλËᨵnḄᦪᑡ5ᐸ´ஹnÐᨵ▲.55

61§2ᦪÒÓMḄÔÕឋ1.ᑭᵨᨵ▲⌚Ø|ᳮ9.2ªÚÔÕឋ|ᳮ9.4.2.ᑭᵨÔÕឋ|ᳮªÚᓫÜᨵᦪᑡÅᨵ᩽▲.3.ᵨÓMᝅ|ᳮªÚᓫÜᨵᦪᑡÅᨵ᩽▲.4.ᑖ᪆ÓMᝅ|ᳮḄᩩ,qàáÒÓMᑡᦋ?^ÓMᑡ5ãäå᪵hàáᩩ,q,஻ç=>é/5ᡭç=>…ëᣵᡈáᩩ,î-ï-0ëᣵ5ãäå᪵?ÈðñÚ.5.àòÊ5±óÊôᜧ>5ᑣÅuᙠö÷øᑡùbb஺(”?ᨵ▲ᦪ).6.ᨵᦪᑡà»ᦈÄ5ᑣÅuᙠö÷øᑡx,“f'ᓃ(aw%).7.ªqᦪᑡ4ᨵḄᐙ⌕ᩩ,e5%ḄþÂøᦪᑡa,"ÐᨵᦈÄḄøᦪᑡ.8.¨f(x)ᙠa,ÿ,ᙠᜐᦪḄ᩽▲ᙠ,:/()ᙠa,ᨵ.9./(x)ᙠa,ᑗᙠᑗ!"3>0,ᦪ/(x)ᙠ(c—S,c+b)ca,b.10./(X)#(a,b)Ḅ$ᦪ,ᨵ:lim/(x),lim/(x)ᙠ.x->a+x—b11./(X)ᙠa,b%ᨵ&'()0,஺(,)-£Ḅ%ᨵᨵ▲/0.12./(X)ᙠ0,+8)12ᨵ!*ae(—8,+8),/(x)=aᙠ0,+8)%ᨵᨵ▲0᪷ᡈ᪷lim/(x)ᙠ.X->+aO§35ᦪḄ6ᜓឋ1,/(x)ᙠ(a9)12/(x)ᙠ(஺9):12Ḅᐙ⌕ᩩ>#lim/(x)?lim/(x)Aᙠx->a+x->b~56

621i2.ᦪC=1+k.FI஻700MḄ᩽▲Nᙠ.3.ᑭᵨRSᦈUᳮWXYᑡᦪᑡḄᦈUឋ:(1)x=a+aq+aq+-■■+a(j"(\ql<1,1a\#!*"£>0,ᙠb>0,I0<1%'-m01<3,0<1%"51<6Mឤᨵ5.g/(x)ᙠr12Ḅᐙ⌕ᩩ>#!"£ு0ᙠbு0,I0-K08./(x)ᙠ(-oo,+oo)l/'(x)KA

63(2)᩽▲x=/(x)Ḅ᪷#Ḅ.9.f(x)ᙠ஺ᙳᩩ>:(1)I/(x)-/(y)\8(2)£¤x=/(x)Ḅ¥ᙠ[஺,#Ḅ§0¥¨#᩽▲.§4ªX«¬(12ᦪḄឋ1./(x)ᙠ®12¯ᨬᜧx0#•Ḅ³´lim/(µ)=/(%),XT8limx=xn0X->82.f(x)ᙠ¶,12·³(1)min/(x)0,:ᙠ¾€(஺À),´/©)=(),/(x)ு0eপ/(஺)=%/(£)="?ᡈ/(஺)=m"(£)="{ফ஻?

645./(x)ᙠÍ0,2aÎ12஻0)=f(2a),:ᙠxwÍ0,Ï´/*)=/*+“).6./(X)ᙠÍa,ᑗ12Ñ᦮ᦪ/(x)ÓÔᦪ.7./(X)ᙠ(a2):12஺9m±8,gf(x)ᙠ(Ö஺)ᨵ;8.×ᦪ/(x)ᙠ(a,ØᑭÙÚ₈(Lipschitz)ᩩ>ᓽᙠÔᦪK,´àI/(%')-/U")\

65-—|,xe(0,1],ব/(x)=xbï0,x=Q;j=~ppXG(0,1],ভf(x)=0,(1)ïᙠÍa,bÎé{f(x)(2)In/(x)ᙠÍa,ᑗé.5./(x)ᙠÍa,ᑗé!"£>0,ᙠ⌲øÔᦪḄᦪe(x),´6.f(x)ᙠᙠùᨵ,(oKa,bL=supf(x)-inf/(x),fxGKa,hLM9ÎcoKa,bL=supl/(x,)-/(xu)l.fx',V9Î7.f(x)ᙠr▬ýᨵᨵþ(/)=Hm|x—,x00nnJᙠ?12ḄᐙᑖË⌕ᩩ>G/(%)=0.8.×ᦪ/(x)ᙠÍA,8Îé,g60

66limjfI/(x+/i)-/(x)Ic/x=0,ᐸæA00Jci12.'/(x)ᙠD,EF8!"(1):ᙠGH;ᑡI5஺/KLA&+iD+Ju(%,)u(a,b),MN(3",P)

67§2ᦪ⚗_ᦪḄᦈឋᐸឋ1.ᑡ_ᦪḄ"1পE--------------9£(5஻-4)(5஻+1)001_ফ4n2-fn=l§(-1বM=IN002n-l(4)z/l=l2"(5)£r"sin஻x,"l

684.'_ᦪ.ᔜ⚗£¤Ḅ¥_ᦪḄ⚗¦§¨ᔠªRᑮ¬_ᦪ“ᓽ஻=1n=lU“+I=¯°+%+2+…+“ᓃ஻=o,1,2,…ᐸ³´=0,µ<´<&<…<´<´+1<….e¶஺”ᦈ,!d·ᩭḄ_ᦪDᦈ.”=1§3¤⚗_ᦪ1.ᑨºᑡ_ᦪḄᦈឋ"81পZ»9஻=17n+஻ফ⁐(2஻—.I9ব£2஻-1ভ¾si¿;n=lম(a>1);"=]1+஻1য஻=inyjnঝ1ÄZ(E";”=[2/2+1E1(8)y————9Æ[ln(஻+l)r”=1(10)^2"sin49஻=௃3163

698(11)(n

70n(12)n=lN00n\T(13)zM=1n"B஻!3"(14)n=l஻opn~(15)z”=1(n+-Yn00x(16)z(x>0);M=1(l+x)(l+x2)---(l+xn)33-53-5-73-5-7-9(17)----1----------1---------------1--------------------1"…;11-41-4-71-4-7-1001(18)࠷1y—!—•(19)£(1ᖪ"0](20)H=1t0J(21)olnn0”=1D□C1(22)ËF(23)£Ì2.ᑭᵨÏÐmÑÒWXÓÔḄ▤Öªᑨº×.ᑡ_ᦪḄᦈឋ:CC1প^[e-(i+-rr஻=]n64

71ফVlnpcos—;“=3஻%”K(3)In——n=l஻+1(4)£(dn+auv+n+b).?i=i00OO00003.ÜÝÞ¤⚗_ᦪZ"“Zvßᦣ,`Zmax(w„,v„),gmin(u„,v„)Þ_ᦪḄn/i=ln=l”=1n=lᦈឋ᝞æç004.e¤⚗_ᦪᦈ,a00n=l12a”=—~9஻wkᦇ=1,2,••,,n5.'<=YT”=L2,…k!"পᦈ9஻=1ì2ílim஻a஻wO.“TOO6.ᑡ_ᦪḄᦈឋ"61ì1íy—1ì2íy------------9஻=2"•In஻•InIn஻ট1ì3íy-----——ìO->oí9£஻ìln஻íInIn72ð1ì4íy--------------..nìlnnípìlnInnxq7.ᑭᵨñòóᑨºôẆöᑡ_ᦪḄᦈឋ:পì஺£÷ᦪí9஻=1ì2஻í!ù65

72(2)+^…+…Äு஺/ு஺)“=in'.n'8.'a“ு0,Mlimᒹ•=/,!limVZ=/.üË£ᔲᡂç9.ᑭᵨ_ᦪᦈḄu⌕ᩩ:nn(1)lim-=0;7(2)limJ^=05>1).n-»ooQ”010.20,ᦪᑡ஻஺“#ᨵ%,&ᦪ'(2ᦈ*n=\11.+⚗&ᦪ2%ᦈ*./0'1ᦈ*71=1n=l12.lim=I,2:+001প4/ு17.ᦈ*;8஻"ਭ1(2)4/<17.£<=>ᦣ.@/=17AᨵBCDEF§4=I⚗&ᦪ1.JEKᑡ&ᦪḄᦈ*ឋ:,11x1+-+...+-বy(-ir—------yভ£«+(-1)"66

73মZsin(W.+i)XM=1Yಔ[(6)n=lD\M=1஺1.஻](8))—sin—;^3"2_`la.cos2஻(9)ᓰz(10)Z(-ir—Xn=l஻£(-1)"sin-(x^O);(11)(12)4(n+1cI11111(13)V2-1V2+1+V3-1V3+l++VH-14+J'V(-Dn+.஺/ஹQ(14)Mnl+a8sin(o+-)(15)AT(sin/?sinn2(16)஻=in2.JEKᑡ&ᦪeᔲghᦈ*ᡈᩩᦈ*:প»஻=]n+xfsin(2஻x)£n\67

74kஹesinnxkஹ(3)Y-------(00)Xn=2n+(-irr00(-iy.z1n=lP+-nn£(-1[2"sin2"x(8)M=1n(9)Y(—)n,lima,,=tz>0;84…£(-1)"co(r>0);(10)n=l£஻!(qr(11)(-Dn(12)Zm(iaX+npM=1oo(-1)"(13)zM=1.noosin-7i(14)Y——YlM=,np+sin—»43.ᑭᵨvwᦈ*xᳮᑨ{Kᑡ&ᦪḄ*ᦣឋ:(1)|+஺r᜛+஺2/-----{a஻q஻H—Jq1<1,1al

754.2:&ᦪ20)ᦈ*,ᑣ&ᦪᦈ*._ᡂ..n=l«=1᜛஻0c5.6|ᦪᦈ*.=@eᔲ£ᡈ1ᦈ*?Ẇ஻=௃…%஻=i~9…+Ln6.:&ᦪZ஻“(A)Za(5)ᦈ*.n=ln=la,,ᦣ.@&ᦪ(C)Ḅᦈ*ឋ᝞?“=17.:ᦈ*.ᑣ4Xுq7.£_1ᦈ*.a>ᦣ,ᑣ4xᦣ„=|nx8.2:ᦪᑡ஻%#ᨵ᩽▲.-a,-)ᦈ*,ᑣ£>,,1ᦈ*.n=l«=19.2:£(a„-a_)ghᦈ*.£/?“ᦈ*,ᑣ£a1ᦈ*.nxn=ln=ln=100co10.2:&ᦪZaj¦ᦈ*.ᑣ&ᦪn=lM=168001஻஺11._(4+2)2.£3”=1n=\"=1¨1ᦈ*.11.+⚗ᦪᑡx“#ᓫª«ᓣᨵ%,2c=YEd--)W=1Z+lᦈ*.12.hᦪᑡḄ#,ᵯ#.²S,=´4,\b=b-b,2kk+lkk=\69

76প᝞¶SJᨵ%.Iᦈ*.%-0(஻—8),ᑣ1ᦈ*.ᨵn=\஻=1op”,op=—£s,jAb“;n=ln=\ফ᝞¶“flIᦈ*,ᑣ1ᦈ*.n=l஻=1஻=10013.ᦈ*.=0,2"T8n=l8ு?(%4+1)M=1ᦈ*,µ00%X஻(%-%)=IXn=lM=I14.Kᑡeº⚪,hḄ¼½,┯Ḅ(1)%>0,ᑣ=஺]+஺2—஺2+஺3—஺3+…ᦈ*X(2)a”—>0,ᑣ—஻]+஺2—஺2+஺3—஺3+…ᦈ*Xবz%ᦈ*.ᑣZ(—1)%“ᦈ*X?i=ln=\0000(4)£Àᦈ*,ᑣ£%3ghᦈ*XH=1n=lম£a”>ᦣ.ᑣ%ÁÂo”=1(6)Ãᓽᦈ*.2f1,ᑣÅ1ᦈ*;M=i71=1\ÆIaIᦈ*,4f1,ᑣ£>1ᦈ*Xn“=1஻=௃(8)£>“ᦈ*.ᑣᦈ*XM=1n=l(9)ᐕa“ᦈ*,a“ு0,ᑣlim஻a“=0.n->oon=l70

7715.2Kᑡ᩽▲(ᐸÉpுl)(1)lim(--5----h---!---+…+——);"T8(஻+I)P(஻+2)Í(2஻)஺(2)lim(——H--—H---1——).…p"Tp"2p2".§5ÏÐ&ᦪÑᦪÒÓ8O01.ᵨvwÔᑣ,2:᝞¶ᑣ1ᦈ*.஻=1W=12.£%ᦈ*,2:ÕÖ×᜻Ꮤ⚗ÚᣚÜᡠᡂḄ&ᦪᦈ*,ᐹᨵÖßḄ¦ᦪ.n=]3.2ᵫ&ᦪ2á=â᣸ᡠäḄ&ᦪn=\N".111111d7=-HH+…V3V2V5V7V4>ᦣ.4.Z%ᩩᦈ*,ᑣåæ&ᦪâ᣸.çè&ᦪéᑖ¦ᦪᑡᨵ=ᦪᑡÁᔣÂn=l+00,ᨵ=ᦪᑡÁᔣ=8.5.ìí=1+!+…+,=c+ln஻+/;,ceîïðᦪ,limr=0,2:n2nn->/ஹ1111.11(1)—H---1----1----=—Inm+—c+—r,;242m222(2)æ&ᦪ++…Ḅᔜ⚗â᣸.òçóôpõ+⚗Ḅ=öóôqõø⚗Ḅ•öÖÚú.ᑣè&ᦪḄ¦qIn2+’In".2q6.2:&ᦪ£üüḄýþ`vwÿᦈḄ.“=|n71

787.e*=£L,x+>-x,eeen=0஻,8.:ᦪḄ⚗ᡠᡂḄᦪᦈ,#$ᙠ&'(ᑁ⚗Ḅ*+&,,-.ᣵ01ᦪ2ᦈ;#ᵫ1ὃ6ᦪCOz(-19஻=1nḄᦈឋ.;ᓝ'=>?ᑖ§1AB▲>?ᑖ1.DᑡABᑖḄF:iJপx--18dxফ2x(1+xyবxe-axdx(a>0);(4)£e~axsinhxdx(a>0);মdx(6)(p,q>0).)(x2+p)(x2+q)2.STDᑡᑖḄᦈឋ:rdxপarctanx,ফߟ—dx;1+xfsinJdx;ব8dx(4)1+xlsinxlম-~~000'dx[14-xsin**x72

79ᡝ8(6)——-dx(n,m>0);\1+x"x~dx^bX4-X2+fdxr£xpe~xdx;(p>0);^

80x,—-dx\fxp"00In"r(11)f—ᔆdx(஻d᦮ᦪ);)f~sin2x,(12)-----dx;xcosax,(ব-----dx;kl+x஻M-0011(14)[mln(l+-)--'n;1x1+x(15)ln(cos—+sin-)Jx;*xx(16)o"Jlna—XFVdx.3.STDᑡABᑖḄᦈឋsᒹuvᦈᡈᩩyᦈ:zCOS-X,প---dx<~X8cosx,ফ-dx;rx0°cosxf(3)r94cosX.(4)-------dx;x+100°°InInx..ম-----sinxdx.Inx4./(x)

81COiH-OOmg(x)dxᦈ,(x)dxᦈ.5.ᳮ11.2,#ᐸ⌮ᡂḄ.6./(x)ᙠ,+8)ᓫD¡,$ᑖ¢"(x)dxᦈ0MXT+007./(x)ᙠm0,+8)'£¤¥0#$ᑖ¦/(x)dxᦈ0lim/(x)=0.᝞©JOx->+ooªª«⍝ᑖr”x)dxᦈ0®¯/(X)ᙠma,+00)¤¥0/(X)»0,ᔲ²ᨵlim/(x)=0?XT+CO8.¢'/(x)dxµKXf\x)dxᦈ,¶lim/(x)=0.9./(x)ᓫD¡¸¹º,/'(x)ᙠm0,+8)¤¥.:[f'(x)sin2xdxᦈ.10./(x)g(x)?ᙠ[a,+8)Ḅ¼ᦪ0$ᙠ½ᨵ▲[q,4]0:r/2(x)dxµ¢g2(x)dxᦈ0ᑣ¢"(x)+g(x)]2dxµ¢/(x)g(x)dxÀᦈ.JilJciJu11.¶প/(x)ᙠ[0,+8)¤¥0$lim/(x)=k,ᑣXf+COp®f(ax')-f(bx)......,b..,—~~~-Jx=[r/(O)-A:]niln—[b>a>0n).xa(2)Äᩩylim/(x)=kᦋÆ¢'/ÀÇᙠ(a>0)0ᑣx->+ooJrzx~f(ax)—f(bx).b..------~-dx=/(0)ln—[b>a>0).xa§2ᴟᑖ1.5ᑡᑖᔲᦈ?ᦈᐸF.1(1)Ecotxdx;(2)jInxdx:74

82(4)2.STDᑡᑖḄᦈឋ:risinx,(1)\-dx'x2dxফব•ydx(4)9sin2xcos2x01nxi"x;ম\1-cosx,(6)2-------ax",°ÏrdxLInxdxVsinxk"Inxdx\(9)(10)—[------dx\Inxn______(11)PVtanxdx\ᑍ(12)PcosxInsinxdx.3.ᑨÒᦈឋ¶(1)fln(l---j-)1dx\ফবpCarc^xT^(4)xP75

83dxম'X஺☢X'¢%dx(6)]xp+xq98dx^(8)exInIxIdx.4.STDᑡᑖḄᦈឋµuvᦈឋ:£sinx2dx;(1)sin”x,ফrX<¢Ú஺)[ব*01ஹsin(x+—)r—dx.(4)5.ÜÝDᑡᴟᑖḄF:Þ(Inx)"dx;(1)~^=dx.ফyJl-Xᐗ6.ᑖA=Fln(sinx)dxᦈ0#ᐸF.7.ᑭᵨ⚪â©0¶M—7l~পJ61n(sin3)d3=In2;:E-2;ফ7([(3)j^sin261n(sinO)dO=—(--In2);ln(l+x),nஹஹভ——2dx=-ln2.71+x288.ãä¶-(1--)<^^X'dx<1+—;(1)2e2e76

8471•idx71=<—.ফ*<åX42;ᓝo=¼ᦪ⚗ᦪ§1¼ᦪæᑡḄ'£ᦈᭆè1.STDᑡ¼ᦪæᑡᙠᡠéêḄ•£ᦈឋ:পÞ,(%)=12+'0xe(-00,+oo);Xফf„(x)=sin-,ni)xe(-Z,/),ii)xe(-co,+co);nxবsx=X£(0,l)[l+nx91(4)■/»=l+஻x’i)X£[஻,+8),Q>0,ii)xe(0,+oo);22nxম0(x)=l+nV'i)xe[(7,+oo),a>0,ii)XG(0,+OO)[nx(6)f„M=l+஻+x'x"^f„M=1+x"'i)XG[0,/?],/?<1,ii)xe[0,l];iii)xE[Q,+OO),஻>1;fM=xn-x2nxe[0,l][n9(9)f(x)=xn-x,,+1,xe[0,1];nxx(10)/,(x)=-ln-,xe(0,l);nn77

8501)/,(x)=-ln(l+e-nv),xe(-oo,+oo)[n£,(x)=e"ñi)xe-/,/,ii)xe(-oo,+oo).2.£(x)(஻=l,2,…)ᙠa,ᨵò0#ᨴ.£(x)ᙠa,b'£ᦈ0¶0(x)ᙠa,஺'£ᨵò.3.f(x)?¹3ô),3=Àõ(஻=1,2,…).n¶£,(x)ᙠ(a,஺)'£ᦈ¹/(x).4.f(x)ᙠ(஺ô)ᑁᨵ¤¥Ḅöᦪ/'(x),$f„(x)=4/U+-)-/(x),n¶ᙠ÷a,ᑗ(a(x).5.Þ(x)ᙠa,ᑗùú0?¼ᦪæᑡû(X)=J"^(஻=1,2,…)¶0(x)ᙠü,ᑗ'£ᦈ¹º.6.ýᦪ஺þÿf(x)=naxe-nx,“=1,2,3,…nᙠ0,1ᦈᙠ0,1ᦈlimf(ᙠᑖ᩽▲rt->CC&7.!"#ᑡ0(x)=஻x-"2(஻=1,2,…)ᙠ0,1&ᦈ'flimf“(x)dxHlim'f„(x)dx.JO஻>00n->ooJ)8.+—(x)("=1,2,…)ᙠ(-00,+00)-.,01<(X)ᙠ(8,+8)—■ᦈ7/(X).8!9/(X)ᙠ(-00,+8)&-..9.+1(x);a,<&Ḅ-.>ᦪᑡ,01/,/)Aᙠa,<ᦈ7/(x)BCx.ea,b(஻=1,2,…)DElimxa=Xo8!lim(x“)=/(%).n—xcn—>oo78

8610.+1£(x)Aᙠ(a,b)ᑁᦈ7/7),/€+,ᓃ)0limf(x)=a,(஻=1,2,…).nnx->x0!"9lima,Ulimf(x)Wᙠ0XY,ᓽrt->00X->XQlimlim(x)=limlim/„(x).n->oox->xX->An-xo0011.+(%)(஻=1,2,…)ᙠ]஻,^_01/9(x)Aᙠ]஻,`ᦈ7/(%),!"9/(᜜ᙠ<^_.§2>ᦪ⚗dᦪḄᦈឋfᐸᑨij1.8kᑡ>ᦪ⚗dᦪḄᦈl(mnḄUᩩpḄ):00Y”পyAconxফz஻+112x+1”=1ব42஻-l1l+x1(4)l+a2nx2'2.ᢥtuvwxᑡ>ᦪ⚗dᦪḄᦈឋ:£(l-x)x",xe[0,l];পn=0ফ~k…+O3.vwᑡ>ᦪ⚗dᦪḄᦈឋ:sinnx.ஹপ«xফ~rrxe(-8,+8)BM1+»x-79

87ব>----B---B---,xG[0,+00)BS஻+X-esin0TஹভUT^7xe(-2,+oo);H=1X+2nxমLB'xe(—co,+oo);8n21(6)+%"),-------------9xe[a,+oo),a>1.„=inx4.vwᑡ>ᦪ⚗dᦪḄᦈឋ:Inn8cos---পZ/,3,Xe(-00,+00);«=i7n+Xsinxsinnx.VVஹফWT[0,2Y];t஻=]\Jn+xব5,XG(T,+8)=1x+஻M(4)“1ম^2"sin—,xe(0,+oo)BM=I3x80

88n(n-\)(-]}-2(6)V\JlxKa;^=,X6[—1,0]Bn=lv஻oo2஻+]Z(—D"^---7XG[-1,1].=12஻+1M5.!"dᦪ(-1^ᐵ7Xᙠ(-8,+8)&¡ᦈ'n¢£X¤¥mn஻=in+x¦Y2ᦈB§dᦪE-----©ªᙠxe(-8,+0஺)&mnᦈ'¤¬ᦈ.„=1(1+x)6.+⚗᜜(x)®;[a,`&Ḅᓫ°>ᦪ᝞²Z%(x)ᙠ³ᑗḄµ¶¡mnᦈ,·¸dᦪᙠ[a,&ᦈ.00007.¹Ḅº⚗!஻“(x)Kc“(x),xeX,¤0£c“(x)ᙠX&ᦈ!"“=1n=lZ%(x)ᙠX&¼ᦈ0mnᦈ.n=I§3U>ᦪḄᑖ᪆ឋ¾1.ẆÀᑡdᦪᡠ⊤ÃḄ>ᦪᙠᢣt&Ḅ-.ឋ:co(1)Å"-10B81

89cosinnx(6)ZIxl0;21+ÍÎ00X2(8)ZIxlᦪ.2."=|ne~nx3.+/(x)=£9B~?8!:প/(x)ᙠxNOᓃ-.;ফ/(x)ᙠx>0ᑁØÙÚÛ.4.!"ᙠ(0,+8)ᑁ-../»=15.+Z"“(x)ᙠÜ)ᑁᦈ““(x)(஻=1,2,…)ᙠ]a,bÝ&-.,n=l8!9প£஻Þx)ᙠ]஺,<&ᦈB஻=18ফS(x)=Z”“(x)ᙠ&-..஻=|6.+dᦪ£a,,ᦈ!"71=1%aᐔlimx->0+n=\஻/t=l7.!"1-r200=1+rncosnx1-2rcosx+r2n=\â1ã<1ᡂåæ§!"82

90------------7dx=2ᐔ(Irl<1).1-2rcosx+r8.ᵨᨵ▲⌚étᳮ!"ëìtᳮ.9.+1᮱A;(0,1)ᑁḄïᦪᑡᓽ0ð(i஺/).ñvw>ᦪò)=£óôn=l'ᙠ(0,1)õḄ-.ឋ.öᓝøùúdᦪ§1■dᦪḄᦈûüýᦈl1.8ᑡᔜÿᦪḄᦈ.প]^஻ফyl£(^+l)z+1;,.=i«+1ব_E]00Jভᧅn=lte[3+(-l)"T"“=]஻,1஻bc"X"tT(2n+l)!!),(\+2,£1+-x"nJ83

91(10)V——±5"+7"(11)4(2஻)’00Xnx1H=1(14)2(2஻-1)!00M=1CC”£5”=1஻2.67ᦪ£a“x"Ḅᦈ89:R,"X"Ḅᦈ89:Q,;<=ᑡᦪḄn=0n=0ᦈ89?পA,BH=1ফ£4+ᒹ)”n=lM=13•6IZwMIWM(஻=0,1,…JKு0),MN?O0VxV᳝Qᨵk=0পᦈM=0Q0஻=084

92§2TᦪḄឋV6/Z[=£%/O|^|ீ஻Qᦈ`aO£bᦈQᨵ1.”=o"=on+1ff(x)dx=2/J+ln=0஻+1W

93থe4.M=ᑡᦪḄu?প00ফZH=1n(2n+1)5.Nl?«4.পZ75y")=y஻=0(4஻)X5+y-y=°•ফ«=o()6/(X)fᘤᦪ:Q“x"ᙠ(-H,R)jḄuᦪ/(x):᜻ᦪᑣᦪ6.”=0᜻Ḅ⚗/(X):ᏔᦪᑣᦪᏔḄ⚗.7.6/([=£“=inln(l+n)(1)MN?/(x)ᙠK—1,1/'(X)ᙠ(—1,1)ᑁ;(2)MN?/(x)ᙠ¡x=T¢£(3)MN?limf*(x)=+co%->r(4)MN?/(x)ᙠ¡X=1W¢£.§3ᦪḄ᠋ᦪ©ª1.ᑭᵨ«¬ᦪḄ©®¯=ᑡᦪ©ª:°±²᪍ᦪ´µlᦈ¶·.(1)ߟ-—,஺/0;a-xফe(1+x)-86

94ব(1+x)3(4)cos*2Xমsin3x;x(6)¼(l+X)"1஻(Ä+Jl+f)(8)1(9)l-3x+2x2'(10)arcsinx;(11)ln(l+x+x2);xarctanx-InJl+x2sint——dft\0t(14)jcosr2Jr.2.ᑭᵨÇᦪÈÉM=ᑡᦪḄ°±²᪍©ª®:1^(14-X)প1+Xফ(arctanx)2;বln2(l-x).3.¯=ᑡᦪᙠᢣË¡ᜩ©ª:ÍÎᦪ:পa-xτ1IফIn---------7x=-l2+2x+x200বInx,x=2;0(4)=1.z/Z»A—1¾"©ª¿(£ߟL):RḄᦪ´Á1=£je.4.dxxÂ5+1)!87

95X—15.Я/(x)=Inx©ªᡂjÒḄÓᦪ.x+16.6ᦪ/(x)ᙠ¶·(a,8)ᑁḄᔜ▤£ᦪeÖᨵ×ᓽÙᙠM>0,Úeᑗxe(a,b),ᨵNl?Ú(஺Ý)ᑁÞß¡xàáᨵ/W=E(X—X஺)".«=0ᓝãäᏝæçᦪ§1èéᦪàᏝæçᦪ1.Nl(1)sin.r,sinlx,…sin…fK0,ëjḄìíîJT(2)sinx,sin3x,•••,sin(2஻+l)x,…fK0,ïjḄìíî;(3)1,cosx,cos2x,•••,cos஻x,…fK0,ïjḄìíî(4)1,sinx,sin2x,•sin,…WfK0,ëjḄìíî2.M=ᑡᕜñ:2%ḄᦪḄᏝæçᦪ?(1)èéò⚗®ᓃ(x)=cosix+஻sinix)r=0(2)/(x)=X3(_ব/(x)=cos-;(4)/(x)=e"*ë)(5)/(x)=|sinx|(-TV

96(8)/(X)=7T2-X2(-ZT(1)/(x)=xsinxxeফ/(X)=:'xe[0,%]xe|-0)2.ᵫ+,-஺F/G“+isin஻x,xx=2/,(-l)-----($7

97a'=Q,a'=nb,b'=-na(n=l,2,…).0nnnn5.op>rst2ᦪ—+cosnx+bsinnx)n2n=lTḄlᦪ/ᐵlmaxim3a\.

983b\\2A=17.c/(x)2ikᕜᙠ(0,2i)dᓫ⌴hᨵRo>h>0(n>0).n8.c/(x)2kᕜᙠ(0,2i)dnᦪ/(x)ᓫdᓣᨵ.Ro>a>0(n>0).n9.op>r/(x)ᙠ/a▤Ḅᑭ₈ᩩᑣ/(x)ᙠ/~.$⊤p=Ḅ⌮⚪¢ᡂ£Ḅ¤¥.10.c/(x)m2ikᕜḄᦪᙠ-¦§¨©fOªcS,,(x)m/(x)ḄᏝ012ᦪḄ¬n⚗ᑖZS„(x)=—+coskx+bsinkx),k2i=iᐸTD(f)m¯ᑭ°±᪶.n11.c/(x)m2ikᕜᙠ(-8,8)~³ḄᏝ012ᦪᙠX஺ᦈ5.Ro>S“(Xo)->/(Xo)(஻f+8).12.c/(x)m2஻kᕜஹ~ᐸᏝ01lᦪᐰk0,ᑣ“X)s0.90

9913.c(x)m2ikᕜᙠ[-i,§¨©fO.ªc¶€(-ii)]¸¹)+¹஺஻io+2ºᙠ.op1Ḅ%(/)=£.»$¼r/O)ᙠ/~pwnpib/xoh"/),ᐸT1஻5C)F&(X).§3ÂÃÄÅdḄᏝ012ᦪI.78ᑡᦪᙠᢣÈÄÅd+,kᏝ012ᦪ;<=ᐸᦈ5ឋ:(1)ᙠÄÅ(0,2/)+,A,0

100/=6(1+*+*+…]6.7ᦪ/(x)ᑖÒÓ᜻ÕÖZᏔÕÖØRᦪḄᏝ012ᦪᐸTGᑍ1,0

1011j(x)8sdréᓝëìíᐗᦪḄ᩽▲ñ~ឋ§1á☢ó1.cô,=(%,/)õmá☢ᑡK=(%,%)má☢dḄ.opI52=÷Ḅᐙ⌕ᩩmlimx=x,S.limy=y.n0n0"fooZJ—>002.cá☢ᑡô6õᦈ5opô£õᨵ.3.ᑨÒ8ᑡá☢óüým,óஹþóஹᨵóZÄÿᑖᢣḄ(l)£=(x,y)lyo|(7)E=(x,y)lx2+:/=0,0?F\G9:;G\A9=;.5.>?=;ḄB;9:;.6.7E9C☢;.>?E9EḄḄᐙ⌕ᩩI9EJKᙠᑡN,OPᱏRS(஻=1,2,…)Vᱥᓃ=4.7.ᵨC☢ZḄᨵ▲⌚^_ᳮ>?abឋ_ᳮ.8.ᵨabឋ_ᳮ>?deᦈghᳮ.9.7E9C☢;᝞k;ᔠEḄmn⌚^oᨵᨵ▲p⌚^ᑣrE9s;.>?s;9ᨵt:;.10.7E9C☢ZḄᨵt:;u(E)9EḄvwᓽ93

102d(E)=supr(P',P"YP'P'wE{>KᙠP\,PfE,|}r(4,6)=d(E).11.᯿C☢;஻J;Ḅᨵᐵᭆ᝞ஹ᩽▲ஹ=;ஹஹ:;ஹஹᨵtn_ᳮ.12.>?Ḅߟᱯ¢abឋ_ᳮ.§2£ᐗ¥ᦪḄ᩽▲¦§¨ឋ1.©ᑡ_ª(1)lim/(x,y)=oo>'->>>()ফlim/(x,y)=A>'->-00বlim/(x,y)=AXT஺''y-^+oO(4)lim/(x,y)=oo.2.{©ᑡ᩽▲(ᒹ³´µ¶᩽▲):প1ᕣn.¸¹+3sin(%3+),3ফlim22XTOx+y>1->0—ᓝ)2বlimxfO71+%2+y2-1y->01(4)lim(x+y)sin.v->0v7~22x+yv->0(5)limx2y2ln(x2+y2x->()y->0(6)limxf0cosx-sinyy->0-y211---r—"4+),->•->0J94

103sin(xy)hm.v->0Xln(x+e'I4lim'X->1x2+y2y->01(10)limATI2x-yy->2xy+1(11)lim44'x->0%+y.\TO1+x2+y2(12)lim22XTOx+y>•->0(13)lim(x2+)/)/("')XT+QO'')T+00(14)lim2Â2+yJ3.ÃÄ©ᑡ¥ᦪᙠ(0,0)Ḅᐰ☢᩽▲ÆÇÈÉÊ᩽▲:2প/(x,y)=ËAiyফ=(x+y)sin—sin—xy(3)/(x,y)=«Ísm(xy)/J(4)/(x,y)=x2/+(x-y)2Ï3+;/ম஻x,y)=x1+y22য஻xy)=Ñx4+3X2J2+2Â3஻xy)(ÒÓ’95

10444(8)f(x,y)=y4.>?Õᐗ¥ᦪ᩽▲ḄÖ×ᨵtឋ_ᳮÆÖ×ØÑឋ_ᳮ.5.>?lim/(x,y)KᙠḄdeᦈgÙᑣ.06.ÚÛ¥ᦪ/(x,y),|Ü(x,y)->(ᐭ0%)Þ,(1)ᐰ☢᩽▲ÆÇÈÉÊ᩽▲oßKᙠ(2)ᐰ☢᩽▲ßKᙠÇÈÉÊ᩽▲Kᙠàßá;(3)ᐰ☢᩽▲ÆÇÈÉÊ᩽▲oKᙠ.7.ÃÄ©ᑡ¥ᦪḄ§¨äপফ“ᑁ)=ᯅ7ব/(x,y)=[x+y]x+y(4)/(x,y)=~33x+ysin(xy)ম/(/x,y)ஹ=j——y,ì-0,,0,y=0;x2+y2*0,(6)x2+y2=0;/ஹ°x3îᳮᦪx3ᨵᳮᦪy2InM+ð,x2+y20,ï0,x2+y2=0;X—,x2+y2w0,2)’(9)஻x,y)ñ(Y+y(P>0)9o,X"+y?=0,L8.ò/(x,y)ᙠóGᑁôõöx§¨ôõöyOPᑭøù₈ᩩIᓽômû(x,y')eGÆ(î,y")eG,ᨵ96

105ᐸJL3¶ᦪ{>/(X,))ᙠGᑁ§¨.9.>?ᨵt:;ZÕᐗ§¨¥ᦪḄᨬÿᳮឋᳮ.10.ᐗᦪ/(x,y)ᙠᐰ☢,lim/(x,y)=A,"#$(1)ᙠᐰ☢ᨵ&'(2)ᙠᐰ☢.11.#)$*/(x,y)ᑖ,-./0xy1Ḅ34-ᐸ6Ḅ71ᓫ9Ḅ,ᑣ/(x,y)1ᐗᦪ.12.#)$*E1ᨵ&<=/(x,y)1EḄᦪᑣ/(E)1<>?.@ᓝBCDEᦪFᐰGᑖ§1DEᦪFᐰGᑖḄᭆI1."JᑡᦪḄDEᦪ$(1)M=x2ln(x2+y2)'(2)u=(x+y)cos(xy)'x(3)M=arctan—'y,X(4)u=xy+'y(5)u=xye^;(6)u=xy+yx.2.ysin,1x2+y2^0,/(x,y)=jx+y0,x1+y2=0.ὃ\ᦪᙠ(0,0)]ḄDEᦪ.97

1063.#)ᦪ“=JTZj?ᙠ(0,0)]cDEᦪdeᙠ.4."JᑡᦪḄᐰGᑖ$(1)y]x2+y2+z2'(2)M^xeyz+e~x+y.5."Jᑡᦪᙠf]ḄᐰGᑖ:x(1)u=I.ᙠ](1,0)(0,1)'7^7(2)”=ln(x+y2)ᙠ](0i)(1j)'”=kᙠ](1,1,1)'বu=x+(y-l)arcsinᙠ(0,1).ভ6.ὃ\ᦪf(x,y)ᙠ(0,0)]ḄnGឋ,ᐸ61A>'sinx2+y20,225/(x,y)=,o,x1+y2-0.7.#)ᦪx2yx2+y20,-2~/(x,y)=

107#)~ᙠ(0,0)].dxdy10.),x2+y20,f(x,y)=

108^x2+y2'(2)u=xy+—

10916."Jᑡᦪᢣ▤ḄDEᦪ:u=x\iny+y3sinx,"^পdx3dy3஻=arctan"ᡠᨵ¸▤DEᦪ;ফ1—xy•/22ஹ4a%3%বw=sin(x+)ு)";Sp+^ru஻=xyze”z"__¿_(4)dxpdyqdzr“q…"j(5)X-ydxnidy"ஹdm+nu(6)u=ln(ax+by)"-------dxmdyn17.Â#JᑡᦪÃÄd2ud~u.—7+—T=°dxdy(1)u=ln(x2+y2)'22ফu=x-y'(3)u-ecosy'y(4)u-arctan—.x18.ᦪ஻=0(x+”(y)),#)dud2u_dud2udxdxdydydx219.,ᙠ]Åx஺,%ÆḄÇz=ᑁeᙠ4ᙠ]ÅX஺,%ÆnGᑣᨵ%Åᐭ00ᡭÆ=£"Å/%Ƨ2ÍᔠᦪF◚ᦪGᑖÐ1."JᑡᦪḄᡠᨵ▤DEᦪ$100

110(1)u=f(ax,by)'(2)u=f(x+y,x-y)'বu=f(xy2,x2y)-,ভ“=/(—,—)'yz(5)«=/(x2+y2+z2)'(6)uf(x+y,xy,-).2.Ó=—Jᔆᐸ6/1nGᦪÂ#/(x-y)13z+1Ôxdxydyy3.^=8஺Õ)c¡¨ᦪᦪg▤nEr=J/'+y'+z'஺rcd2vd2vd2v1d2v1--T--T--T=--T'.dx-dy-dzcdr4.*ᦪ/(x,y,z)-xÖ×ᦪÃÄᐵÙf(tx,ty,tz')=tnf(x,y,z),ᑣÚ(x,y,z)¡஻ÔÛÔᦪ./(x,y,z)nGÜ#)/(x,y,z)¡nÔÛÔᦪḄᐙ⌕ᩩà15.Â#Jᑡᔜ$(1)u=(p(x2+y2),5!iJy--x—=0$dxdy-/2ஹduxu(2)஻=)᜛(ᔆy-),ᑣ)ã+Õ='dxdyy(3)u=x(p(x+y)+y”(x+y)ä!j—r-2——+—r=0'101

111(4)u=x(p(-)+(2)ᑣX2^4+2xy+y2å=0.xxdxdxdydy6.஻=/(x,y)nGᙠ᩽ᙶ᪗/ᣚx=rcosd,y=rsin6F,#)ëஹ—íÆ*ïðÚÅ|£Æ2+Åò17d/0.dxdy8.ᦪ“=/Åó,ÆÆÃÄôõôö÷ød2ud~udx2+dy20,n/TLa,a2"n#)ᙠJᑡ/ᣚùúûᢝd/,ᓽᨵ■+=°.পX-—2~y—o2S+஻S+஻ফx=escost,y=essint'x=Ys,tx,y=w[s,tx~T-~~~=~.!"#$%&.বosdtdtos9.()*+Ḅ*ᣚ./,஻!1)*+:4=%=/+2,*ᣚ:$%ᒹ=

112d2zdz2o11.YZᑡᡠ]Ḅ^ᦪz=f(x,y)Ḅ$▤Ia▤bcᦪ:পe$2z+/=0<(2)x+y+z="+>'+z<(3)xyz=x+y+z<(4)x2+y2+z2-2x+2y-4z-5=0.12.YᵫZᑡᡠ]Ḅ^ᦪḄᐰkᑖdz<(1)z=/(xz,z-y)<ফF(x-y,y-z,z-x)=Oi(3)f(x+y+z,x2+y2+z2)=0<(4)/(x,y)+g(y,z)=O.13.Pz=z(x,y)ᵫV+V+z?=ᓣ(s)ᡠ].iiER^(x2-y2-z2)—+2^y—=2xz,dxdy14.PZ=x2+y2,ᐸzy=/(x)!ᵫ{2$|+).2=1ᡠ]Ḅ◚^ᦪ.Y~Id2Z715.P"=x2+V+z?,ᐸz=/(x,y)!ᵫVs+y3+z3=3xyzᡠ]Ḅ◚^ᦪ,zdu62UY--.---7dxdx216.YZᑡᡠ]Ḅ^ᦪḄcᦪIbcᦪ(1)J22YH.H

113w2-v=3x+y,4dududvdvব0)s²$Ḅᑗ.³¥¦´ᑗµᙶ᪗¸ᡠ¹/Ḅº»¼.5.Y☢/+2>2+322=21Ḅᑗ☢.½¾¿À☢x+4y+6z=0.104

1146.¥¦☢Á(x—az,y—8z)=0Ḅᑗ☢ÂÃ$Ä¿.ᐸz஺Å!Æᦪ.X7.¥¦☢Z=x>ḄÇ$ᑗ☢ÈÉÊË.8.YÌ☢Í(x,y,z)=O,G(x,y,z)=0Ḅ¬ᙠ஺Ï☢sḄᢗÑḄᑗ.§4ᔣcᦪ1.P/(x,y,z)=x+/+z3,Y/ᙠᐘ(1,1,1)Õᑮ/=(2,—2,1)Ḅᔣcᦪ.2.Y^ᦪ஻=|zᙠA(5,l,2)ᜐÕᑮ6(9,4,14)ḄᔣABsḄᔣcᦪ.c#du3.Y—dl(Jto?o>(1)M=ln(x2+y2),(x,y)=(1,1),/Âx¸ÚᔣḄᜳ¯!60°<00ফM=xe'v,(x,y)=(l,l),/Âᔣ+(1,1)®ᔣ.004.P^ᦪ/(x,y)ᙠ(x°,%)Ük,ᓫÞᔣ+/]=,4=($(/.%)=1,à(ᐭ00â)=0,]/½ãdl2—0,ᡭ)_7dl-5å.5.P/ᙠ%(2,0)Ük./(ᓃ).)ᙠçᢣᔣ[=(2,-2)Ḅᔣcᦪê1,ᢣᔣËḄᔣcᦪê$3,ëìí(1)ᢣᔣî=(2,1)Ḅᔣcᦪêïðñ(2)ᢣᔣî=(3,2)Ḅᔣcᦪêïð?§5òóôõ105

1151.ᑏ÷Zᑡ^ᦪᙠᢣḄòóôõ(1)f(x,y)=2x2-xy-y2-6x-3y+5,ᙠ(1,-2).(2)f(x,y)-x2+xy+y2+3x-2y+4,ᙠ(-1,1).Y2.Y^ᦪ/(x,y)=-ᙠ(1,1)øùḄ஻▤úûüᨽþÿ⚗Ḅ.yy23.ᦪ/(x,y)=ᙠ(1,-1)Ḅ▤ᑏ!ᨽ#$⚗.x4.&ᑡᦪᙠ(0,0)Ḅ)▤*(1)/(x,y)=sin(x2+y2)0ফf(x,y)=exln(l+y)0(3)/(x,y)=yj\+x2+y2;(4)f(x,y)=excosy,■5.56Ḅ78ឋ*:£&x'y'+o(“')=0(2—0),i+j=0ᐸA᜛='.5&=o(i,jDEF᦮ᦪi+/=0,l,…஻)ᑭᵨ78ឋ/(x,y)=ln(l+x+y)M!ᨽ#$⚗Ḅn▤NO.6.QRS/஺,y)=5UV(*05)?ᵨAXYᳮ56[ᙠ஺6(0,1),\37V7107l0TC.7tO.7t6---cos——cos------sin——sin——.43366367.^/(x,y)ᙠ_஺ᑁᨵbcᦪ[ᙠd(x,y)=/,(x,y)e0.56/(x,y)ᙠ஺Dfᦪ.8.:|i|,|jklmḄnc&ᑡᦪopᑮr⚗Ḅst:cosx1+x+y(1)-----(2)arctan-------cosy1-xy9.^ᦪ/(x,y)ᨵzᑮ”▤|}bcᦪ,~5஻(f)=/(a+஺+)Ḅ஻▤cᦪm)প=(+&1f(a+kt,b+kt).dx8y106

11610.^/(x,y)D஻rrᦪ56aa(x—+k—ynf=n(n-\)•••(n-m+1)/.dxdy11.^/(x,y)=஻(ax+by),ᐸA஺DfᦪᙠᒹḄᑁ“ᨵg▤|}cᦪ.5*ᙠ(0,0)Ḅk/ay)=£"G3)Sy)"+(ay)k=0k•j=oᓝ◚ᦪ[ᙠYᳮ§1ᓫḄI.^ᦪ(x,y)(1)ᙠ_஺*ᐭ0-aWx4Xo+a,y஺-64y4%+b¤|}0ফ/?(x^o)=o0o(3)§x¨Y©ᦪF(x,y)kyḄ«!ᓫ¬ᦪ*ᑣ®¯ᑮ°±²³´~56µ.2.V+y+sin(·)=0ᙠ▬s¹ᔲᵨ᝞¼=/(x)Ḅ⊤¾´¿¹ᔲᵨ᝞x=g(y)Ḅ⊤¾´3.(x,y)=y2—/(]—V2)=஺ᙠÁÂḄ▬s®78ᙢpYᓫXஹ|}ஹdᨵ|}cᦪḄᦪy=/(x).4.56ᨵ78®cḄᦪy=y(x)sin+sinhy=x,cᦪy(x),ᐸey-e~yAsinhy=——-——.5.Æ+zlny+e"=1ᙠÉ(0,1,1)Ḅᑁ¹ᔲpY8ÊnkË᜜ÍÊnḄᦪ.6.^/k8ᐗᦪ~Ï/а±ᩩÒ2/(·)=/(x)+/(),)ᙠ(1,1)Ḅᑁ¹pY78ḄyDxḄᦪ.107

1177.^ᨵ*x=y+0(y),ᐸA᜛(0)=0,d§-a0,§-b

118u=f(x,y,z,t),'g(y,z/)=O,஻(z,f)=O.ᙠ°±ᩩÒ&஻kx,yḄᦪ´ᒹᒹ.dxdy7.^ᦪ஻=஻(x)÷×”=/(x,y,z),஻,u@ḄABC2D@ḄEBC2Bl+WV1+WVVᣚGH109

119IᓝKL᩽NOᩩ"᩽N§1᩽NOᨬQRST1.1ᑡᦪḄ᩽ᜧNW᩽QNX(1)f(x,y)=(x-y+\)2-,(2)/(x,y)=3axy-x3-yy(a>0)#22J1_-/“^ு0)#(4)/(x,y)=e2\x+y2+2y);(5)/(x,y)=sinxcos.co(x->-)(0-<^);++S(6)/(x,y)=(7^2+y2-i)2.2.op:=62+"+஺,stuvᦪw(xy),1=1,2z᝞ᑭᵨᨬQRST2~ᦪa,b,cᡠḄᐗGHv.3.op☢3ᨵnḄᙶ᪗ᑖ4(,%)(%2)2…24,)2~2OnḄGWᨬQ.4.~1ᑡᦪᙠᢣDᑁḄᨬᜧNWᨬQNX(1)f(x,y)=x2-y2,D={(x,y)\x2+y2<4};(2)/(x,y)=x2-xy+y2,D={(x,y)llxl+lyl0,D=R'.5.~¡X(1)/3>)=4:+25¢+஺2+26+2Q+£ᙠ¤ᨵᨬQN2¥ᨬᜧN2ᐸA>0,B2

120F(XoyoZo)=Oª(XoyoZoWO.«¬ᵫF(x,y,z)=0Ḅ◚ᦪz=/(x,y)ᙠ(x,%)°Ḅ᩽NḄ±⌕Wᐙᑖᩩ".~0ᵫx2+y2+z2-2x+2y-4z-10=0ᡠḄz=f(x,y)Ḅ᩽N.7.~1ᑡ◚ᦪḄ᩽ᜧNW᩽QNX(1)(x+y)2+(y+z)2+(z+x)2=3#(2)z2+xyz-x2-xy2-9=0.8.ᙠopᕜ¶2PḄᑗ¹02~☢ºᨬᜧḄ¹0.9.ᨵᙽ¼ᱏ2¾6=24cm,⌕ÀḄÁÂᢚÄÅᡂÇ2uȺᨬᜧ2~ÉÂḄʹaWᢚÄḄ¾Ëx(ÌFÍ).§2ᩩ"᩽NOÎÏᨽÑSᦪT1.~1ᑡᦪᙠᡠÒᩩ"1Ḅ᩽NX(1)/=X+y,Ôf+y2=Ö#(2)f-+y~tÔx+y-1=0#(3)f=x-2y+2z,Ôf+J+z'l#(4)f——I—,Ôx+y=2#xy(5)f=xyz>Ô/+)/+F=12x+y+z=0#(6)f=ax2+by2+2hxy,Ôf+)2=1#(7)f=x2+y2+z2>Ô(/+y+z?)2+b2y2+,212,iy=Q.x+m+nzill

1212.~/=/~Ü2ᙠᩩ"x+y+z=஻2a>0m>0«>0,p>0,x>0,ffy>0,z>0Þ1ḄᨬᜧN.3.~ᦪz=g(x"+y")ᙠᩩ"x+y=/(/>0,஻21)Þ1Ḅ᩽N2¨¡àX6஺20,á0,஻21â(a+8j<ä+4.~⊤☢ºæçºᨬᜧḄ¶Gç.5.~çºæ⊤☢ºᨬQḄ¶Gç.6.~ᙊḄ᜜ᑗ¹0☢ºᨬQὅ.7.¶஺Ḅ¼ëᑗᡂÁì2ìᡂíG02îìᡂᙊ஺ÁìḄ¶ᔜðñâ,òᡠíG0☢ºWᙊ☢ºÞWᨬQ.8.~óᑮR☢4x+4y+CR+4=02஺2*+%)'+஺21+"2=0ḄøùḄᨬú஺9.~ûᱥùy=FWýùx—y=lþḄᨬú.10.~x>0,y>0,z>0âᦪ/(x,y,z)=lnx+21ny+31nzᙠᳫ☢f+V+*=6ᡝḄ᩽ᜧ.a,b,cᦪ,23,a+b+c^abc<108-------.I6J11.ᦪ/(x,y,“,v),F(x,y,u,v),G(x,y,w,v)(▤*+,,-./▣1GF.FIG,GG.Gvv>42.L(x,y,u,v)=f(x,y,u,v)+2,F(x,y,u,v)+4G(x,y,u,v),89(:,%%,%)<ᦪLḄ>?@ABC(D)ு(<)0F<ᦪ/ᙠHIᩩKF(x,y,u,v)=0,G(x,y,u,v)=0LḄᩩK᩽1(ᜧ)@.MᓝOPQRSTḄUᑖ112

122§1QRSTḄWUᑖ1.XLᑡ᩽▲B(1)limf\x2+a2dx^“foJ-iফlim[x2cosaxdxinxব/(X)=fஹᒹM/y^(4)£jBf(t,s\lsllt.3.f(x)rsᦪ,Fপ=Af[IAx+4+t'Xd(x).4.ẆvᦪḄrsឋᐸh/(x)<[0,1]rsyḄᦪ.5.{ᵨUᑖ}LX~XLᑡUᑖB(1)Pln(tz2-sin2x)dx(tz>1);(2)£ln(l—2acosx+/Mx(1஻l<1);(3)Pln(6Z2sin2x+/?2cos2x)dx3,bw0)^arctan(atanx)ஹf(4)P------------dx(lal<1).tonY113

1236.{ᵨUᑖᣚXLᑡUᑖB(1)f-——^—dx(a>0,£»>0)^(2)j'sin^ln—~—dx(a>0,b>0).7./*+ᦪXLᑡᦪḄ(▤~ᦪB(1)d(x)=jB(x+y)/(y)dy^(2)&x)=f/(y)lx-yWy(a(X2+2/)222•(f+)29..(y)=[jnjF+y2d<ᔲᡂ¡F¢=fgm{+FL/x.10.F(x)=0*°s"cos(xsin0\10XAF(x)=2¦.11.f(x)§*+ᦪe(x)*+ᦪAᦪw(xj)=^-[f(x-at)+f(x+at)]+[¨”'*(z)dz22aJx-a,ª«¬®¯°d2u3%2W”±²³´ᩩK஻(x,0)=/(X),M,(X,0)=(p{x}.§2QRSTḄ¶·Uᑖ114

1241.ALᑡUᑖᙠᢣ?Ḅ¹ºᑁ¼ᦈ¾B(.)(4>0)^/+y(2)¨C,(ᧅ"(_QO<<+00).xi+r(3)¨y'e~'dy(a0,x>0)Be(5)¨ÄÅ(P>0).1+xp2.ÆÇLᑡUᑖᙠᢣ?¹ºḄ¼ᦈ¾ឋB(1)4ae~axdx(00),(ii)XG[0,È^(3)£"e~(x~a)2dx,(i)a0rsC;l=a,4=஻Ḇᦈ¾ya3<•*)1+/(3)/(%)=¨ஹ'nJ5xe(o,2).y(%-y)-5.8/(x,y)ᙠ[a,b]x[c,+oo)rsQRST¶·Uᑖ115

125/(x)=f(x,y)dyᙠÑa,6)ᦈ¾ᙠx=bÒᦣA/(x)ᙠÑa)F¼ᦈ¾.6.QRSTḄ¶·Uᑖ/(x)=1'/(x,y)dyᙠÑa,ȼᦈ¾Ḅᐙ⌕ᩩK°)^"ax_-bxeফ--------sinmxdx(a>0,Z?>0)^x(3)¨xe~axsinbxdx(a>0).9.ᵨÖRᦪḄUᑖæçLᑡUᑖ:oo-ax~--bxree(I)[---------dxCa>O.h>0)^09ߟ0-᱐.ফ-------sinmxdx(a>0,/?>0).xᑭᵨ(:æçíîíïUᑖ10.l+x200cosax.L=-----axl+x2äéᐗsinax.rLj=I-----—dx.11l+x2ILᑭᵨe-^dy(x>0)æçᏝòóôUᑖ7ro.2/1r0°sinxF1=sinxax=———dxJ)21)õ116

126ä%os8cosx,^412.ᑭᵨö÷Uᑖ8sin%,71é_2yjᐔr-----dx=—,eax=----O21)2æçLᑡUᑖ:,4sinx,(1)———ax^xফ21sinycosyx᜜ᐔ,)y(3).x2e~ax2dx(a>0)^(4)¨d31*x(a>0)^(H-OC-U+=)(5)erdx(<7>0).J-0013.XLᑡUᑖ:(I)£-~—costdt^¨sln(l+x2)ফL1+x2dx.14.AB(1)fin(ù)dyᙠ[/,/?]S>1)¼ᦈ¾;(2)fûᙠ(ߟ8,ᑗþ<1)¼ᦈ¾.J)>Y§3ᑖ1.ᑭᵨᑖ.ᑡᑖ117

127(4)[x2y]a2-x2)dx(஺>0)(5)jrsin6xcos4xdx"#-e-'x'஻)*᦮ᦪ-;9dx/°A/3-COSXᐔ2sin2"xdx'஻)*᦮ᦪ-;(10)dx'஻)*᦮ᦪ-.2.34ᑡᑖᵨᑖ⊤6789:ᑖḄ<ᙠ>:m-1(1)-----dx஺2+x”-ஹf*dx(2)(3)PtanwxdxভJ£)dx<(5)#xpe~axInxdx(cr>0).3.MN(i)r%-r"jx=-r(-)(஻>o)6nn(2)limPe~xdx=\.n—>+x>J-oo4.MN118

128U(1+xV"xa-'e-'xdx(5>0).n(a)=s"WXᓝZ[ᑖ§1[ᑖḄᭆ]1.MNឋ_(4),ឋ_(6).2.MNᨵbcd>UḄefgᦪhi.3.j஺kilmḄn☢pqᡈstuv7/,gᙠQUef7MN(1)zᙠ஺U/(P)20,{/(P)|ឤ~0,ᑣ[j(P)dQ>0(2)zᙠ஺Ḅᑖd>QuQU7ᨵL/(p)do=Lg(p)d஺7ᑣᙠQUᨵ/(P)g(P).4.j/(x)ᙠ[a,b]i7g(y)ᙠ[c,d]i7ᑣ/(x)g(y)ᙠqd>஺=[a,b]X[c,d]Ui7{\\fMg(y)dxdy=(x)dxg(y)dy.D5.zᙠ஺Ui7/(x,y)ᙠ஺Ukᔲiὃgᦪf1,zx7ykᨵᳮᦪ7f{X9y)=[-\,6x,yᨵkᳮᦪ7ᙠ[0,1]X[0,1]UḄᑖ.6.jD=[0,l]x[0,l],ஹ[1,xkᨵᳮᦪ7“ᐗ)’)%%kᳮᦪ7119

129MN/(x,y)ᙠ஺U|i.§2[ᑖᓄ¡ᑖ1.4ᑡX[ᑖ(1),D-[3,5]x[l,2]DD=0,1x[0,ᨴফDxyex+y2dxdy,D=[«,/?]বD(4)-dxdy)D—[0,1]x[0,1].£1+£2.3X[ᑖJJ7(x,y)dxdyᓄ)|¥¦§Ḅ¡ᑖ:D(1)஺ᵫx©ªf+y2=/(>>0)ᡠ¬ᡂ(2)஺ᵫy=x,x=2®y='(x>0)ᡠ¬ᡂx(3)஺ᵫ>=2x3,y=l¯y=2¬ᡂ(4)O={(x,y)M+|y|ீl}.3.ᦋ·4ᑡ¡ᑖḄ¡§প[dy^f{x,y)dx<বIdx£(x,>)¹+fdx"/(x,y)dy.4.j/(x,y)ᙠᡠᑖḄd>஺Uef7MNfdx£f(x,y)dy=fdyf/(x,y)dx.5.4ᑡX[ᑖ:120

130প\\^9nykdxdy(᪷,k>0),0kᵫV=2px(p>0),x=2■¬ᡂḄd>D2(2)^xdxdy,Dk¾y=0,y=sinx\%=o¯À=¬ᡂḄd>D(3)^\[xdxdy,Dx2+y2ᵫy==4x¯y=4ᡠ¬ᡂ.D6.94ᑡX[ᑖ(1)I=^dx^e~ydy(2)/=fdxfÇ2"’2¹(3)I-dyj9y2sinx2dx.7.jy©3n☢ᨵbd>஺ᑖᡂÈÉḄÊᑖA¯஺2,MN(1)z>(x,y)ᐵx)᜻gᦪ,ᓽ>(—x,y)—),ᑣJJ/(^y)dxdy=0D(2)z/(x,y)ᐵx)Ꮤgᦪ,ᓽ/(—x,y)"(x,y),ᑣy)dxdy=2y}dxdy=2y)dxdy.D஺|D28.4ᑡ[ᑖ(1)jjj(x+y+z)dxdydz,Vx2+y2+z2

131ᓶ▲Ḅᨵbd>(5)^xy2dxdydz,VᵫÒ☢z=xy,y=x,z=0,x=1ᡠ¬ᡂV(6)jjjycos(x+z)dxdydz,Ùkᵫy=4,y=0,z=0®x+z=2•ᡠ¬ᡂḄdv2>.9.ᦋ·4ᑡ¡ᑖḄ¡§ri(4-xfx+v(1)[Ü[Ý']/(x,y,z)dz(2)1Þfdy£*ஹf(x,y,z)dz(3)£dxff(x,y,z)dz10.94ᑡuvßv:(1)Vᵫ+y2+[2<à2,Ç2+>2+z242rzᡠáâ;(2)VᵫzNf+y2,yNx2,zW2ᡠáâ;(3)Vkᵫᙶ᪗n☢®x=2,y=3,x+y+z=4ᡠ¬ᡂḄÅæv.§3[ᑖḄ·mçᣚ1.ᵨ᩽ᙶ᪗·ᣚ3y)dxdyᓄ)¡ᑖD(1)DVêᙊìk+y2>0(2)Dêía20<(3)஺ᙊ/+y20)(4)D*îq2.ᵨ᩽ᙶ᪗·ᣚ4ᑡX[ᑖ(1)jjsin7?+y2dxdy,D7r2

132(2)JJ(x+y)dxdy,஺kᙊ/+ð4%+?ḄᑁD(3)jj(x2+y2)dxdy,஺ᵫòóô(f+/>=/(//õöß஺)¬ᡂD(4)^xdxdy,Dᵫ÷øùúûôr=0¯êüô6=71¬ᡂD(5)^xydxdy,஺ᵫÈᦪûôr=e'¯êüô஺=0,஺=ý¬ᡂ.D23.ᙠ4ᑡᑖþÿᐭ஻,ᓄᑖ(1)£dx£(f(x,y)dy,x+y,vx-y(2)fdxf(x,y)dy{00,y>0^,1D4,4x=ucosv,y=usinv(4)^f{x,y}dxdy,ᐸ஺={(x,y)|x+y4a,xN0,yN0}(a>0),Dx+y=u,y=uv.4.〉Ḅᣚ!ᑡᑖ(1)fj(x2+y2)dxdy,஺#ᵫ/+V=i'ᡂḄ)*D(2)Jj(x+y)dxdy,Dᵫy=4x\y=9+,%=4-,.=9)0'ᡂD(3)^xydxdy,஺ᵫ1=2,2=4,y==2x'ᡂ.D5.ᑭᵨ67ᑖᵫ!ᑡ8☢'ᡂḄ:;Ḅ;(1)%=2,/+>2=஺2,.()(2)z=Vj-+y2,z=0,x2+y2=R?<(3)ᳫ☢f+y2+22=/=ᙊ?☢@2+y2=ax(a>0)ḄBᐳDᑖ222972xyz.xyzভ(z>0)a2b2c2"a2b2c22222xyxy2(5)Z~------1-----,2z=-----1-----494922(6)z=x+y,z=x+y123

133(22ஹ2xF+y?ᡠ'ᡂḄ☢.6.8E1HC7.ᵨ?ᙶ᪗ᣚLM!ᑡF7ᑖ(1)j|j(x2+y2)1dxdydz,Vᵫ8☢z=x?+=4,z=16'ᡂ;dxdydz,Vᵫ8☢V+y?=9,/+/=ᾦ⌲]=/ᓝ/_2஺8.ᵨᳫᙶ᪗ᣚLM!ᑡF7ᑖপ+y+z)dxdydz,Vx2+y2+z2O,Ox=ay,x=pyV(00,b>0,c>0).ফ(ab124

134§48☢☢1.!ᑡ8☢Ḅ☢(1)z=a"ᒹwᙠᙊ?V+y2=/ᑁḄDᑖ(2)┵☢f+y2=gz?=|☢x+y+z=2஺(a>0)ᡠ}DᑖḄ⊤☢(3)┵☢z=M+/?☢7=2xᡠDᑖ;(4)8☢z=J|☢x+y=l,x=lmy=lᡠ!ḄDᑖ.2.☢x=rcos(p,y-rsin(p,z-h(p[Q0)ᡠ}Ḅↈ£.2.!ᑡ¡ᙳᒴḄᱥ;Ḅ¤¥(1)ZK1-ᔆ+Z20;(2)ᵫᙶ᪗☢m|☢x+2y—z=lᡠ'ᡂḄ¶☢;(3)z=/+y\x+y==0,y=0,z=0'ᡂḄ:;;(4)z2=x2+y\z>0)|☢z=ᐭ'ᡂḄ:;125

135(5)¦ᳫ¸/4¹2+/2+22w/,zNO.3.!ᑡ¡ᙳᒴḄ|☢ↈ£Ḅ½¾¿(1)ÀÁ஺/?,ÂᜳÄeḄ|ƶÀ¯ᐵȪÀbḄ½¾¿(2)y=/,y=1ᡠ'|☢ɯᐵÈÊEy=—1Ḅ½¾¿.4.ᵫ!ᑡ8☢ᡠ}ᙳᒴ;Ḅ½¾¿(1)z=¹2+y2,x+y=±l,x-y=±l,z=OᐵÈZÌḄ½¾¿(2)ÁÍ;ᐵÈḄ+᩽Ḅ½¾¿(3)ᙊÏ/ᐵÈXÌZÌḄ½¾¿.5.Ñᳫ;᮱+y22<2xÓᔜÔḄ¡¬ÈÕÔᑮᙶ᪗×ÔḄØÙÚᳫḄ¤.+z6.ᙳᒴↈᱏ/+y20)ᜐᓫߤÔḄà.7.ᙳᒴ?;á2+/<஺2,041âÜÈ(0,0,c)(c>/z)ᜐᓫߤÔḄà.ã6ᓝ+ä8Eᑖ=8☢ᑖ§1ã+å8Eᑖ=8☢ᑖ1.Ü᯿7ᑖḄçèឋ¤ᑏã+å8Eᑖã+å8☢ᑖḄëìឋ¤.2.LM!ᑡã+å8Eᑖ(1)£(x2+y2)J.v,ᐸL#l(0,0),(2,0),(0,1)⚔ÔḄFįফ£yjx2+y2ds,ᐸL#ᙊᕜ/+y?=ax(3)jxyzds,ᐸLEx=acosf,y=asinf,z=ñ(0

136(9)jxyzds,ᐸL#8Ex=f,y=gJ52,z=gû(04f41)(10)^2y2+z2ds,ᐸL#x2+y2+%2=/=x=yóùḄᙊᕜ.3.LM!ᑡã+å8☢ᑖ(1)[[(/+>2)1ᐸS#:;Jஹ+y2ḄÀ}8☢;S(2)ᐸS?☢Y+y2=R2☢2=0[=஻ᡠḄᑖJJx+ys(3)JJl/JzWS,ᐸS!☢Z=/+y2z=lᒘ$ḄᑖS(4)jjz2JS,ᐸS'(☢Ḅ)ᑖ*Sx=ucosv,y=usinv,z=v(0(),y>(),g>0Ḅ9Ḅᙶ᪗.89AB᜛=1.9.Nᙳᒴᳫq/+2+22=/0)c2iḄjklP.10.Nᙳᒴᳫ☢Z=)/)y2(xNO,yN0,x+yḄᙶ᪗.11.!9᩽ᙶ᪗*᜛=(஺)(44J4%),wxj/(x,y)dsḄJᵨnwx$ᑡ!9ᑖ:127

137(1)jeᓛ7ds,ᐸL4!9x?=a(Owe4?)(2)\xdsJᐸL4cᦪ'9p=aek\k>0)ᙠᙊᔆ=஺ᑁḄᑖ.L12.NAB᜛=P஺Ḅᙊ┵☢x=rcos(p,y=rsin%z=r(0<(p<2^,0ḄÐ9஺ᡭ☢Ò;Q)ḄᑖJ½XiÒS,o,o)(6>a)@ÉÊJL4Ô¥┐;ᔣ.128

1383.NÕ!9LÒḄ°±²!9ᑖcydx-xdyJLx2+y2'(1)Lᙊᐝ2+,2=஺2,⌮¥┐;ᔣ22(2)L×ᙊA+2=1,Ô¥┐;ᔣrcTb'(3)L(0,0)JÅÙ஺JcÅÚᙶ᪗iḄÄ;{JÔ¥┐;ᔣ(4)L4(-1,-1),(1,-1),(0,1)⚔@Ḅyz{JÔ¥┐;ᔣ.4.NgÛ«cÜkḄᓫO@ᡠÝḄÞJnO@µ!9L½A@Ükᑮ8@*(1)F=(x-2xy2,y-2x2y),L☢!9y=Y,A(0,0),B(l,l)(2)F=(x+y,xy),L☢!9y=1-11-xl,A(0,0),B(2,0)(3)F=(x-y,y-z,Z-x),LḄEP{r(f)=fi+*j+,A(0,0,0),B(l,l,l)(4)F=(y2,z2,x2),LḄâᦪx=acosf,y=£sinf,z=yf(a,£,yÄᦪ)JA(a,0,0),B(a,0,2").5.8P,஺,/?ᙠLÒãäJLᐝåXÀJXÙ/,æç*I[Pdx+Qdy+Rdz\

139(3)\\yzdzdx,S+}+]=1ḄÒVᑖḄÒÈ(4)^zdxdy+xdydz+ydzdx,SÍ☢F+=1☢ý=0þz=3ᡠᑖḄS᜜È(5)^xydydz+yzdzdx+xzdxdy,S4ᵫ☢x=y=z=0x+y+z=1ᡠḄs☢⊤☢Ḅ᜜(6)jj./dydz+yzdzdx+z3dxdy,Sᳫ☢x2+^2+z2=a2Ḅ᜜s(7)^x'dydz+y2dzdx+Vdxdy,Sᳫ☢(x-a)2+(y-b)2+(z-c)2-R2Ḅ᜜.s9.&'(Ḅ()v=(A,y,0),-ᓫ/01ᑁ3ᳫ☢x2+y+F=4Ḅᑁ4(5ᳫ☢Ḅ(6.10.&(Ḅ()v=(75,0,,-95:☢x2+y2=/(;஻AzW/z)᜜Ḅ(6.>?ᓝ?AᔜCDᑖ1ḄὶGHIJKL§1ᔜCDᑖ1ḄὶG1.MᵨO᪍QRSTUᑡDᑖW.22(1)jx/dy-x2ydx,ᐸYL[ᙊ0+%=1,^_ᔣ(2)£(x+y)dx+(x-y)dy,Lbপ(3)£(x+y)2Jx-(x2+y2)Jy,L⚔gA(1,1),6(3,2),C(2,5)ḄijkḄlm,^_ᔣ(4)£(x24-y3)Jx-(x3,£/+/=1,^_ᔣ(5)£eysinxdx4-e~xsinydy,Lqka«xWhcWyWdḄlmt^_ᔣ(6)J/7[(ysinxy+cos(x+y))dx+(xsinw+cos(x+y))dy],ᐸYLyz⌲|ᐝ~.2.ᑭᵨO᪍QRSTUᑡᡠkḄ☢DW130

140(1)r2=a2cos26»ফᓱkx^+y^Saxy(«>0);(3)x=cz(l+cos2?)sinz,y=asin2rcost,O't/z+(y-z2+x2)++y2^dxdy,Ss(x—a)?+(y-b)2+(z-c)2=R2Ḅ᜜.4.ᵨᡲ¤QRSTUᑡDᑖW(1)^x2y3dx+dy+zdztᐸY(a)LᙊᕜX?+y?=42,z=0,ᔣ⌮0┐t(b)Ly2+z?=l,x=yᡠ©Ḅ[ᙊt3xª_ᔣ«¬tᢥ⌮0┐ᔣ(2)[(y-z)dx+(z-x)dy+(x-y)dztL3(a,0,0)®(0,a,0)¯(0,0,°ᑮ(a,0,0)Ḅijk(3)£(y2+z2)i/x+(x2+z2)dy+^x2+y2^dz>ᐸY(a)Lx+)t+z=1Hiᙶ᪗ªḄ©tᐸᔣHᡠ☢´µ᪀ᡂ¸¹ºᑣt(b)L/+¼+/=2Rx,x2+y2=2rx(00),¿ḄᔣHᡠ☢Ḅ᪀ᡂ¸¹ºᑣ131

141(4)£ydx+zdy+xdz,Lx?+V+z?=y+^=o,3xª_ᔣ«¬ᙊᕜ⌮0┐ᔣ.5.&L☢Át/☢yzᔣtÂÃLcos(nJ)ds=0,ᐸY஻LḄ᜜ºᔣ.6.&SÁ☢t/yzÄÅᔣtÂÃ|jcOS(H,/)6?S=0.S7.-/=£[xcos(n,x)+ycos(n,y)]^5,Lᒹᨵm´µ஺Ḅᐝ~t஻LḄ᜜ºᔣ.8.ÂÃDᑖcosfrtÎf—'——ds=0,Jz.ᐸYL☢;ᓫÏдµbḄlmtÑrL;gᑮb᜜';ÅgḄÒÓt஻LḄ᜜ºᔣ.ÔÕt⊤ÖL;gᑮ஺ᑁ';ÅgḄÒÓtᑣ×ØDᑖÙÚÛÜ2Ý.9.STDᑖs'ᐸYsÞᓫÁᐝ~☢t஻☢sᙠgᬞ9GᜐḄ᜜ºᔣtr=(J—x"+(஻—y)j+â—z)ã,r=W.äåUᑡæCçkèéêJW(1)☢SᒹḄ´µëì(x,y,z)g(2)☢SᒹḄ´µì(x,y,z)g.10.-ÂWíqgwtᐸYSᒹñḄᑖᱏᐝ~Á☢t஻SḄ᜜ºᔣ.r=(x,y,1),t=”.ᑖUᑡæCçkóôêJW(1)VYëìõg(0,0,0)(2)VYìõg(0,0,0)öt÷132

142ᵨøᜐ=^dxdydz^limVr£.()+frᐸYᓃûõgôtû£üḄᳫ.11.ᑭᵨQRýᣚûUDᑖW(1)^xydxdy+xzdzdx+yzdydzsr/dududu(2)——cosa+——cosp+n——cos/aS.Plfixdydz/ᐸYcos஺tcos/7,cosy☢Ḅ᜜ºᔣÿ.12.஻(x,y),v(x,y)ᐹᨵ▤ᦪḄᦪAM-----1-----.dx2dy2:^\udxdy=Jdsপ<7dudvduOuஹফ\\v\udxdy=-\\-----+------dxdy+\—ds**bxdydy■}ldndudv(3)jj(wAv-vAw)dxdy=-Jv-----u——ds.dndn(Tᐸ!஺#$%&/ᡠ)Ḅ*☢,-ᒹ/#0/᜜2&Ḅ3ᔣᦪ.dndnᑖ262^>213.ᑶ+8+9•,§VḄ=>%☢:(1)S2duYduফpqrs+dxdydz+JJJ?“dxdydz.S51Vdzv@!஻ᙠBCᐸ=>%☢SDᨵḄ▤ᦪ—#0%☢SḄ᜜2&Ḅ3ᔣᦪ.dn14.FGHᑡ%☢Jᑖ:222(1)0(/->+?+(>22yjdzdx+2z(y-x^dxdy,ᐸ!S=+£+=ls133

143(zNO)HR;(2)JJ(x+cosy)dydz+(y+cosz)dzdx+(z+cosx)dxdy,S]^஺Ḅ=>☢,s_]^Qᵫx+y+z=1bcᙶ᪗☢)ᡂ(3)JJT•gS,ᐸ!//=%3+/3/+234,஻5Ḅ᜜2ᔣS#Y+y2+z2=/S(z20)DR;(3\3^+yz]dydz+y32itz(4)n^+pᔆdzdx4-ᓝ/y3jdxdy,S——++=10Sa~)W)7tx20uvR.15.ᵫ%☢Sᡠᒹ)Ḅ^JwxV=-jj(xcosa+ycos/?+zcosy)dS,3s@!cosa,cos/?,cosy#%☢SḄ᜜2&Ḅ3ᔣ{.16.9L*☢xcosa+ycos/?+zcosy-p=0DḄ$%&ᡠᒹ),-Ḅ☢JS,dxdydzjcosacos/7cos/,xyzᐸ!Lᔣ.17.RQ,Rᨵᦪᐝ$%☢S,ᨵdz+Qdzdx+Rdxdy=0.s…dQdRdxdydz18.6tx,yu,Qtx,yuᙠᐰ*☢Dᨵᦪ_t#,%u#!ᦪᔆ#ḄDᙊ/x=x+rcos0,y=y+rsin6^t0஺uuឤᨵ00jp(x,y)dx+Q(x,y)dy=0,134

144P(x,y)c0,■c0.§2Jᑖ¢£¤ᐵ1.©HᑡJᑖ¢£¤ᐵªḄ«:C(x-y)(-®);পf.2)ydx-xdy0ᙠ°*☢Ḅ£;ফ42J)x26.8)xdx+ydy(3)0³´µ¶Ḅ£;U.°)x2+y2(4)+y)(dx+dy),@!/(஻)ᦪ;(5)᜛(x)dx+“(y)dy,ᐸ!0,#ᦪ:46.1,1)(6)23)+xzdy+xydz¦xdx+y2dy-z3dz¹º)»:?B+¼,ᐸ!½,¾)(-Jᙠᳫ☢/+À+/=/D.(8)2.HᑡᐰÁᑖḄ¶ᦪ1+2xy-y2)dx+(Y-2xy-y2^dy(1)(2xcosy-y2sinxldx-\-(2ycosx-x2siny^dyফa.b,-by-ax.ব—dx-\--dy-\---------azzzz(4)(fn2yz)dx+(Vn2Ã)dy+(z?-2xy"z("siny+2xy2)dx+(e,cosy+212ு”Èমx1(6)---+2x2dx+3yঞdy+5z3dz.2r%29x-ryx--y-)3.ᦪ/(x,y)ËÌÍÎÏᩩÑÒÓÔÁᑖ@6(x,y)(xdx+ydy)ᐰÁᑖ.135

1454.©1xdy-ydxPdx+Qdy=2Ax2+2Bxy+Cy2〉ᔠᩩÑᔁ=Øᐸ!A,B,C#ÚᦪAC-B2>0.᜻t0,0uḄÜÝÚᦪ.5./=1Þ+ß,ᐸ!L³àµ¶Ḅáᓫ$%&ãᔣ.L)x2+y2ᡂḄ,-#O.t1u஺³ᒹä¶t2u஺ᒹä¶ᙠᐸᑁæ.6.2—x—(2+x)-2:-+_2!__(X-2)2+/(X+2Z(2-x)2+y2(2+x)?+y2ᐸ!L³àµt-2,0ubt2,0uḄáᓫ$%&.7.“tx,yuᙠᓫ´,-஺Dᨵ▤ᦪ“tx,yuᙠ஺ᑁᨵç+%=0Ḅᐙ⌕ᩩÑDᑁnáᓫᐝ$%&L,êᨵdx2dy2ᐸ!ë#L0᜜2&Ḅ3ᔣᦪ.dn8.FGJᑖ(x+y)dx+(xy)dy22x+yᐸ!LìAt-1,0uᑮ6t1,0uḄnᩩ³´µ¶Ḅᐝ%&Ḅ3îy=/txutTWxWlu.9.FGJᑖ/=[xlnl+>2-]u+yin,+y2-ludy,ᐸ!LóJᦪḄôõ-ᑁìt2,0uöt0,2uḄ⌲øᐝ%&.136

146§3ùúûü1.M=Y+2y2+3z?+2xy-4x+2y-4zᙠ஺(0,0,0),A(1,1,1),6(-111)ḄþÿḄ.2.ᑡᔣḄᦣ(1)F=(y2+z2,z2+x2,x2+y2)(2)F=(x2yz,xy2z,xyz2)(3)=(!"H).yzzx$3.%&/=(yz(2x+y+z),xz(x+2y+z),xy(x+y+2z))*ᨵ,,-ᦪ.4.0P=x2+5Ay+3yz,Q=5x+3Axz—1,R=(A+2)xy-4z.(1)Jpdx+Qfy+Rdz,ᐸ9L*;

1477.ᔣF=g“d(arctan£)VWa>0,=2x“஻>0,%&ᦪᑡ4ᦈÊᐸ᩽▲.3(XXXX2.limcos—cos—cos——cos——.ᵫ¨%&VietaÑÒ5222232஻3.ᵨ£-NÔÕ%&Ö×ᦪᑡØÙÚlim(x“—xᔙ2)=஺ᑣ1¥Ý7'1=0.n->co஻138

148nVi஻4.=lim£{=±.limVan~~\,(a>0).஻T8-3஻"6"T8"1=151Wf=lI15.1+-,ᑏâ/(x)Ḅ⊤äÒåær.஻)J6.0-ᦪ/:RfRᙠx=0▬èᨵ馿fÀ×ᦪx,f(ax)=bf(x),%&/(x)ᙠ.7.0/(x),g(x)ᕜê-ᦪ¦lim(/(x)-g(x))=0,%&/ëg.%->+<»8.0a஺)஺îï0,1ð]-ᦪ00,óᙠᦪᑡ+oo,ôlim(/(x„+2)-/(x„))=0.n—>oo10.ö*ᔲóᙠR]Ḅ-ᦪônḄfu-ᦪÃøាúzᑮüýᡈÃøាúzᑮëý11.%ᙠR]óᙠN-ᦪ/(x)ÙÚ/2(x)=x2—3X+3.12.y=(1+”eN,13.RiemannᦪRR->RḄ1,x=0;1-q>0!"#$᦮ᦪ;40x^Q.᩽▲limR(x),ᐸ*X(JGR.I/14../RiemannᦪR(x)ᜐᜐ234.15.᪀⌼34ᦪ/(x),8/(x)ᙠᨵᳮᦪ<Ḅᦪ="ᨵᳮᦪ>?4ᦪ="@ᳮᦪ.16../BC£(E8,1)G>arctan+X=arctanx+—.1-x417.Ny^ksinkx,fkcoskx.A=1k=l139

149஻Q஻2<஻E118.R஻eN,./'MU(—1)"஻W>m=n.19.YZᦪ/(x)ᙠ[\U0,1]^_`>ᙠ(0,1)34>!/(0)=/(1)=0,/(a)=1,.V/leR,ce(0,l),8-2"©-e=1.20.fgR^ᦪf(x)>h/(+8)=lim/(x),/(-oo)=lim/(x)./(x),g(x)X->+00X->yᙠRᓃ34>VXER,gீX)w0,!/(+8),/(-oo),g(+8),g(-8)nᙠ>./m"(E+8),W.3g(+°°)-g(-8)g'e)21./(x),g(x)34>!fEᑗxrᨵ"X)g(*WO,uvᙠ/(x)Ḅwxy/(x)g(x)z{<|\>c}ᨵg(x)ḄEz{<.22./:RfRᨵ▤_`4ᦪ>!VxeR,᜜/2(0)+/2(0)=4../3xeR,8/(Xo)+r'(xo)=0.023./:Ua,b]fRᙠUa,b]34!/'(a)=f'(b).,.,,>"/C)E/(a)rale./e(a,b),s<.24.ᦪ/(x)ᙠUa,^34!/'(a)=/'S)=0../:^e(a,b),s.t.|/"(^)|>—^-|/(/>)-/(a)|.r25.ᦪ/(x)ᙠUa,+8)34>BxNaGᨵl/'(x)K"(x)l..f(x)=0.Y26.ᦪ/(x)ᙠU0,+8)34>!0K/(x)K—^,1+x1-f2./3<>0,s.t./,)=/aஹ>.(1+9)27.ᦪᙠU0,1]_`>ᙠ(0,1)34>/(1)-/(0)=1..fgH!᧪1E᝕=0,1,2,…,஻-1,nᙠᡈe0,l,8ᡈ=kl(n-l-k)!140

15028./"[\>ᦪ/(᜜ᙠ/^"ᦪḄEzᐙ⌕ᩩ"Vc'GI,Ba,s.t.f(x)>a(x-c)+/(c),VxGI.29.᩽▲(1)limx-fl+—1E(IX)(2(3)lim—arctanxXfᐔ30.$=sinx>0,x=sinx,n-0n+ln31.¤=cு0,¦•=ln|\+&],.᩽▲limy,,.n+1InJis32.«¬y=Ḅ®.33./(x)=dt,fgx>0,/(x)+/(3.Jl1+zx34.ᦪ_`34,/(l)=l,!Bx21Gᨵ/'(X)=F:—,x-+f-(x)7T./lim/(x)nᙠ>!lim/(x)V1+2.Xf+oOXT+CO435.ᦪ/(x)ᙠU0,1]^▤_`34>/(0)=஻1)=r(0)=0,7প=1../j|'(7"(x))2Jx<4,´ᢣ¬¶·ᡂ¹Ḅᩩ.36.y=>(x)(xN0)º»ᓫ½¾Ḅ_`ᦪ>஺(0)=0,x="(y)ÀḄÁᦪ>./+^1/{yydy>ab(a>0,^(+oo)>Z?>0),¶·ᡂ¹B!ÄBb=0(a)஺(^2¶ÅÆ"Young2¶Å)37../ÈÉ®ÅḄYoung2¶Åab<-ap+-bq,ᐸ*,+,=1,pqpqa,b,p,q>0,¶·ᡂ¹B!ÄBa"a.38./(x),g(x)ᙠUa,_`>—+—=1,p>1,./HBder2¶Åpq141

151¶·ᡂ¹B!ÄBAl/Y=8lgW,4,B¢ᦪ.39../Holder2¶Å£%ᑗW£ᚄ9ᐸ*p,q>1,!/=13=17\/=17-+-=1>%,¬>♦>%ÎÏ>¤>…>2"yÐ2ᐰ"{ḄÒÓÔᦪ.pq40./(x),g(x)ᙠU஻>஻]_`>pN1,./Minkowski2¶Å:41../(1)Psin2,,+1xdxoolஹফ!2lnb-

152a42../:<------------h>a>0a+bb-a./ᦪᑡ%=ᔩ"ᓫ½ÉÜᦑᨵ᩽▲4,!AHO.43.n+—n2(n44../StirlingÕÅ஻!ÞJ2஻(nfoo).45.ßàB஻ߟ8G>@âᜧäḄ▤ᦪ.ᦪᑖæ᜜ç⚪éᵨ⚪1.ëìíîïðEñ“óEÕô”>õö÷øùôᑶᢝᨵüᡈÀḄýþüÿḄ஺ᐸᑶ◤⌕10╏஻◤⌕Ḅ10╏!◤⌕ᙠ#$%ᐭ'()*+,-.ᑭ0ᙠ஻12345+10╏67+,x“╏8஻◤⌕Ḅ10╏Ḅ9:.Ꮇᑭ᳛142

153?ᢝ4%,5DᑭEF.2.HIJ⚪ḄᑶLM஻ᐳ◤⌕Ḅ10஻╏Ḅ9:S“SLT+ᑶḄU9:S.3.WXឋZ[\┲-90ᕈᢣᦪ⊦dᓽᐸfg஺hitkiḄᐵm஺,Q)f=0Ḅfgrstuᦪᐸv⊦w29ᓽ291Ḅfgxᒕz{|:Ḅv.ᙠ60~{᪶ᘤḄᜧWT┲-90,SᐭᙠJḄḄ1960ᡠᔾᦈḄḄ╃90ᙠ2005ḄḄᒕᑖk64.ᨬ℉ḄWXឋᱥ-14,uᵨIᨵ¡ᱥḄ~ᙠ¢£¤Ḅfg?ᢝ¥¦§¨ᨵ¡¤©ª«¥4¬®-14§᠒᠒WX⊦d.°±14Ḅv⊦wᜧ²5730.Ꮇ᝞ᙠᙽ¶¢ᱥ·¤J¸914Ḅfg¹ᩭḄ1/8,½¾·¤Ḅ~65.°±¿ᕈᢣᦪÀÁḄᓽ¿஺hifkiḄᐵmQ=Q°e".᪷ÆÇᐰᳫ2000ÊËÌÍ¿ᙠ197541ÎS52%ḄÀÁ᳛ÀÁ½LTᐰᳫ¿ḄÏÀwᓽ¿ÀÐÏᡠ◤⌕Ḅi.6.½Ñ$ÒÓ▭ᦪÆᑏTᡃ!MḄ¿ÀÁ×ᦪSÆØÙEᡃ!Ú¿4Û20Î67.ÜÝJᨵᚮ᪻à5xᲦàḄâᐳãä.xᲦàᐜᑮçᑮèḄᲦàéᨵᑮêëᡠᨵ᪻àᙳᑖ5íîzx.ïðᐸḄíëîzḄx᪻àᡮᑮÜò.óxᲦàᩭᑮÜÝçᑮèḄᲦàéᨵᑮôëçᑮḄ᪻àᙳᑖ5íôîzx.ïðᐸḄíëîzḄx᪻àôᡮᑮÜò.õöxᲦàôZ᪵ᩭø.¾ù(1)ÜÝJᨬ{(ᨵx᪻à6(2)5xᲦàûðk1ÜÝJ(ᒕzx᪻à68.ᎷsüýþÿfᜩḄᦪNN=10000°?ᨵ,50100?9.Ḅ├"#q%&'├"()p,ᓽq=f.-./p=140,7(140)=15000,/'(140)=-100,789:;<=ᦈᐭ@AB;<()C@DE()ᕖG10.H/I(L/km)⊤NOPQRSv(km/h)VḄὑX#.YZ/(80)=0.05,/'(80)=0.0005.(1)Hg(v)⊤NOPQRS]V^ᓣX`VḄabcg(80),g'(80)d(2)Hf”)⊤NOPQRSvV^hḄὑX#c஻(80),"(80)d(3)Ꮇ᝞noQ80km/hḄRSV9:p`qḕXᙢVtuḄvwnAxyRC@zRG143

15411.᪷|}~☟#9஻%ḄᱥxQᐝRCḄRSVᐸ>77dmdm#y”=/.c,Ḅ.71-(V2/C2)dvdv12.ᩩxᐸP¡¢Vᐵ¤p/4=¥ᦪᎷ¦§930N/cn?,¢9500cm3,Q60cm3/sR᳛zᙠB§Ḅ¯ᓄ᳛@±G13.ᙠ§7=0²³´ᵯḄᵯ¶ᘤᐸᵯ₹#஺ᵫ»¼½C,?<0Q=\-,1RrCe,Z>0ᐸ¿Àc9Áᵯv&¦Ḅo¥ᦪᵯÂ/=ᔞ.dt(1)cfு0Åf<0ḄᵯÂ/(2)f=0஺`ÇᔩG/A᝞¦G14.9:ÉÊËÌÍḄ⏚ឋᓄÐÑᑭᵨ:PHÕ.PHÕᵫÍ¿Öb×ḄØSx&¦PH=-lgx,cxPH=2PHᐵ'Öb×ØSḄ¯ᓄ᳛.15.9:%ÛÜÝᨵÞßᱥ¿àḄᵯáâᙠᜧäḄ᜜☢.Ꮇ¦ᖪè<100m,néᙠo~ᵯá50m²᜜50m<ᜐ.ᵯáoQ10m/sᒴRìDíᵯáᙠ100m<ᜐḄ§9f=0,஺9nḄîïðñòóᑮᵯáḄðñõöḄᜳø.Ꮇ᝞Q஺Ḅ¯ᓄ᳛ùᵯá}~'nḄú᠒wSᵯáᜐ'?Ḅ@ᓄTḄᐵ"᝞#T=(--^]-D2,ᐸ&C()*ᦪ.ᑣFG(H>I5ᱥḄKL.-#123JdD(1)Oᜧᑺ6Ḅ5Q>?@ᓄᨬᜧ(2)Oᜧᑺ6Ḅ5QH>KLᨬᜧ18.Tᙠᙢ☢XᜐḄ3Z[\Ḅ[]ᐸ^_`abᜐc[\deḄfg.ᙠhZid20kmḄ[\Ḅmnodᐸ&3Z[\xkmᜐḄqᔠ[]^ᵫtu#kk5=4-+——Jᐸ&|2})*ᦪ~aZ[\Ḅ[]6.᝞%2(20-x)22k1=7k2,h[\mno3Qb[]^ᨬ.144

15519.᪥ᑮ.a᪥1000m,ᓅ200m.◤⌕3ᱏᜧ₝ᙢ.¡₝ᙢ¢£¤₝ᙢᙠ₝ᙢ᜜¦(2m/s,ᙠ₝ᙢo¦(1.5m/s.©-ª⌱¬ᩩ£ᨬḕ°20.`±3ᜩḄ³´᝞#oᓤᙠ¶·¸ᜧo3¹ᓤᙠºᙛ£᧕½¾¿Àoᙠ⏀ᔳÃÄÅÆÇÈṑÊ.Ꮇ̶·¸ᜧºᙛ£᧕½⏀ᔳÍᙠÎ3ᩩÏ£¢⏀ᔳᙠ¶·¸ᜧºᙛ£᧕½Ð°deᑖÒ}8km12km.-`±ªᙠÓᩩ£oḄ.ᜐÔ3°ÏÕQÖᜩ¤×Ḅ£ØᨬÙ21.ᎷÌÚÛÜ⃩3ÞÈᐹᔆḄáâãᡝåæ•èéê.ëìãᡝíîOï᫹ñÍòóôõ.íîIᑮ300ø᫹ñḄᓫú}90ûᐗ᦮Þþᓫÿ3001100᫹0.25ᐗ.ᙠᙠ᫹ᑮḄᨬᜧᦈᐭ%ᨬ&ᦈᐭᔜ()&*22.,-./01ᦪ/4x6=0Ḅ᪷9:;<-=>?@ABC,DEFGH=IJHK஻M1,O⌕r4x“6wO,B“=ᑣV“ᐙᑖᜧx“/YZ/4x6=0Ḅ[\᪷.]^/4x6=l+/,abc9:@def(ᨵᦔḄᳮᵫ.223.ᑭᵨmnoᵨ9:@.sinx-'x=0Ḅ᪷ᐸGᑖvw^xyz:3%=0.904,=0.905,%=0.906.^bc-9:@Jxyze.24.᝞GḄ^r=/4f6Ḅ᳛ẚḄGᔣ᜜.=ᑁḄḄf.25.=ḄVᙠ1965(225ᐗ,ᙠ1965ḄfḄ,V=225-1.15,,.1965ᑮ2005ḄᑁḄ¡ᙳ.26.ᙠ£¤¥4Madrid6,©=ª«¬Ḅᦪ஻(ªḄ1ᦪ[\ᙢᵫ^¯;mn£¤¥ª᯿Ḅ¡ᙳzA4161ᨴ4267ᨴ436=ᑁ.27.=᪷½¾¿1000࠷ḄÁÂÃᓾᑮÅÂ20࠷.ÂÆTCÃᓾfḄᐵÉ,AT=20+980"°''.416mn1¿ḄÂÆÌ426mn=ᑁ¿Ḅ¡ᙳÂÆÌ436Cᙠ=Ḅ¶yCÍÎḄÏÂÆzḄ¡ᙳÐÑ426ḄÍ(ᜧÒ(*]^ÓÔḄÕឋᩭØÙÚÛ.28.ᙠfÜÝÞᦪß^2'4àá>/ᓫã6Ḅä᳛å.ᙠ=0ᑮ=1ḄÝÞfåᦪß.29.æçèéêḄå᳛CéêᡂìÑ.íî1900Ḅéê,324ᓝð᫜61920Ḅéê,32e4ᓝð᫜6ó2005èḄéê()&*ôᙠ2000ᑮ2005Ḅféê()&*30.õö⊤☢ᨵ=ᙊùúᐸûüGýrmᜐḄḄᵫ145

156p(r)=[50/(1+r)]kg/n)3.᝞ᵫOm᡽ᑮ10000m,#Ḅ$%&,'%&($%&)*+Ḅr,.31.-ᛢ/01ᵫ2=3஻5ᐸ7y(/+9Ḅ0Ḅ:5;(<=ᦪ5#ydtḄ⊤@A.32.)CDE727GHIJKL+1(320km/h.᝞NᒴP1ᙢᙠ30sᑁ1U0P1ᑮ320km/h,V⍝XᨵZ[\146

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭