欢迎来到天天文库
浏览记录
ID:62427354
大小:237.31 KB
页数:24页
时间:2021-05-03
《必刷卷05-2020-2021学年高二数学下学期期中仿真必刷模拟卷(人教A版2019)(解析版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2020-2021学年高二下学期期中仿真必刷模拟卷【人教A版2019】数学检测卷05注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.设Sn为等差数列{an}的前n项和,且a3﹣a5+a8=6,则S11=( )A.55B.66C.110D.132【答案】B【分析】由已知利用等差数列的性质可求a6=6,根据等差数列求和公式即可计算得解.【解答】解:
2、由a3﹣a5+a8=6,得:a6=6,则===66.故选:B.【知识点】等差数列的前n项和2.已知曲线在x=0处的切线l过点(﹣3,﹣a),则实数a等于( )A.2B.﹣2C.3D.﹣3【答案】B【分析】先根据f(x)求出f(0)和f'(x),然后求出切线l的斜率,再得到切线l的方程,根据切线l过点(﹣3,﹣a),求出a的值.【解答】解:由,得f(0)=﹣1,f'(x)=,∴切线l的斜率k=f'(0)=﹣1,∴切线l的方程为y+1=﹣x,即x+y+1=0,∵切线l过点(﹣3,﹣a),∴﹣3﹣a+1=0,∴a=﹣2.故选:B.【知识点】利用导数研究曲
3、线上某点切线方程3.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百一十六,借问大儿多少岁,各儿岁数要谁推.这位公公年龄最大的儿子年龄为( )A.9岁B.12岁C.21岁D.36岁【答案】D【分析】设第n个儿子的年龄为an,则{an}是公差d=﹣3的等差数列,利用等差数列前n项和公式列出方程组,能求出结果.【解答】解:设第n个儿子的年龄为an
4、,则{an}是公差d=﹣3的等差数列,由题意得S9=9a1+=216,解得a1=36.故选:D.【知识点】等差数列的前n项和4.已知函数y=f(x)(x∈R)的图象如图所示,则不等式<0的解集为( )A.(﹣∞,0)∪(,2)B.(﹣1,1)∪(1,3)C.(﹣∞,)∪(,2)D.(﹣∞,)(1,2)【答案】D【分析】根据条件判断函数的单调性,利用数形结合即可解不等式.【解答】解:∵<0,即(x﹣1)•f′(x)<0,∴不等式等价为x>1时,f′(x)<0,此时函数单调递减,由图象可知此时解集为:(1,2).当x<1时,f′(x)>0,此时函数单调
5、递增,由图象可知x<,即不等式的解集为(﹣∞,)∪(1,2).故选:D.【知识点】函数的图象与图象的变换、其他不等式的解法、利用导数研究函数的单调性5.已知数列{an},{bn}均为等差数列,其前n项和分别为Sn,Tn,且=,若≥λ对任意的n∈N*恒成立,则实数λ的最大值为( )A.B.0C.﹣2D.2【答案】A【分析】由已知结合等差数列性质可得,===,然后结合单调性可求取得最大值,从而可求.【解答】解:因为数列{an},{bn}均为等差数列,且=,所以======单调递减,当n=1时,取得最大值,若≥λ对任意的n∈N*恒成立,则,即λ的最大值为
6、.故选:A.【知识点】等差数列的性质6.已知函数f(x)=(a为常数,e为自然对数的底数)的图象在点A(e,1)处的切线与该函数的图象恰好有三个公共点,求实数a的取值范围是( )A.B.C.D.【答案】C【分析】求出原函数在点A(e,1)处的切线的方程,切线与该函数的图象恰好有三个公共点,只需求出切线与当x<1时的函数联立方程组有两个交点,利用△>0求出a的范围,再讨论在x<1的这个前提下成立,即在x<1时切线图象低于抛物线图象即可得答案;【解答】解:函数f(x)在点A(e,1)处的切线的方程:由f(x)=lnx,x≥1,得f′(x)=,则f′(e
7、)=,∴f(x)在点A(e,1)处的切线方程为y=x,①函数y=f(x)=(x+2)(x﹣a),x<1②∴由①②联立方程组可得:x<1化简得:x2+(1﹣a)x﹣2a=0,③∵切线与该函数的图象在A(e,1)点有一个交点,∴只需要满足③在当x<1时有两个不相同的交点,利用△>0求出a的范围,△>0即:a2+6a+1>0,解得:a>﹣3+2或a<﹣3﹣2,④在x<1时,切线图象应低于抛物线图象才能保证交于两不同的交点;∴f(1)=(1+2)(1﹣a)>×1解得:a<,⑤∴④∩⑤得a的范围:故选:C.【知识点】利用导数研究曲线上某点切线方程7.已知f(x
8、)是定义在(﹣∞,0)∪(0,+∞)上的偶函数,当x∈(0,+∞)时,f(x)=
9、
10、.若a=f(﹣),b=f
此文档下载收益归作者所有