欢迎来到天天文库
浏览记录
ID:57392448
大小:553.50 KB
页数:47页
时间:2020-08-15
《定积分的几何应用ppt 课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Chapter6(4)定积分的几何应用教学要求:掌握用定积分表达和计算一些几何量(平面图形的面积、旋转体的体积、平行截面面积为已知的立体体积、平面曲线的弧长).回顾曲边梯形求面积的问题abxyo一、问题的提出与微元法面积表示为定积分的步骤如下:abxyo提示面积元素1.思考方法:(1)求总体量,先求部分量(以不变代变).(2)对部分量求和取极限.2.所求量U须满足的条件(1)U是与一个变量x的变化区间[a,b]有关的量.(2)U对于区间[a,b]具有可加性,就是说,如果把区间[a,b]分成许多部分区间,则U相应地分成许多部分量,而U等于所有部分量之和.这样,就可考虑用
2、定积分来表达这个量U.3.微元法的一般步骤:根据问题的具体情况,选取一个变量(如x)为积分变量,并确定它的变化区间[a,b].(2)设想把区间[a,b]分成n个小区间,取其中任一小区间并记为[x,x+dx],求出相应于这小区间的部分量U的近似值.如果U能近似地表示为[a,b]上的一个连续函数在x处的值f(x)与dx的乘积,就把f(x)dx称为量U的微元,且记为dU.这个方法通常叫做微元法.应用方向:平面图形的面积;体积;平面曲线的弧长;功;水压力;引力和平均值等.曲边梯形的面积围成图形的面积1.直角坐标情形二、平面图形的面积围成图形的面积为:Solution.两曲
3、线的交点选择x为积分变量,面积元素Solution.两曲线的交点选x为积分变量,Solution.曲线与x轴的交点的横坐标有:问题:积分变量只能选x吗?Solution.两曲线的交点选为积分变量如果曲边梯形的曲边为参数方程曲边梯形的面积2.参数方程情形此时要注意曲边是有正方向的!从而确定出起点和终点.当你沿曲边朝着这方向前进时曲边梯形将在你的右边.Solution.椭圆的参数方程由对称性知总面积等于4倍第一象限部分面积.面积元素曲边扇形的面积3.极坐标情形Solution.由对称性知总面积=4倍第一象限部分面积Solution.利用对称性知Solution.由极坐标计
4、算公式得:1.平行截面面积为已知的立体的体积如果一个立体,我们知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.立体体积三、立体体积Solution.取坐标系如图底圆方程为截面面积立体体积Solution.取坐标系如图底圆方程为截面面积立体体积注意:若立体垂直于y轴的截面面积为B(y),则旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体.这直线叫做旋转轴.圆柱圆锥圆台2.旋转体的体积旋转体的体积为xyoSolution.直线方程为Solution.Solution.(1)绕x轴旋转时,选x为积分变量,(2)绕y轴旋转时,Sol
5、ution.如图所示,选x为积分变量,Solution.补充利用这个公式,可知上例中Solution.体积元素为四、平面曲线弧长的概念弧长元素弧长1.直角坐标情形Solution.所求弧长为Solution.曲线弧为弧长2.参数方程情形Solution.星形线的参数方程为根据对称性第一象限部分的弧长曲线弧为弧长3.极坐标情形Solution.Solution.Theend
此文档下载收益归作者所有