隐形圆解决最值及面积问题---含答案.docx

隐形圆解决最值及面积问题---含答案.docx

ID:57339021

大小:253.99 KB

页数:10页

时间:2020-08-12

隐形圆解决最值及面积问题---含答案.docx_第1页
隐形圆解决最值及面积问题---含答案.docx_第2页
隐形圆解决最值及面积问题---含答案.docx_第3页
隐形圆解决最值及面积问题---含答案.docx_第4页
隐形圆解决最值及面积问题---含答案.docx_第5页
资源描述:

《隐形圆解决最值及面积问题---含答案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。

2、④确定圆心位置,计算隐形圆半径。⑤求出隐形圆圆心至所求线段定点的距离。⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。典型例题讲解1.如图,△ABC中,AC=3,BC=,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1B.2C.D.解:∵∠CDP=∠ACB=45°∴∠BDC=135°(定弦定角最值)如图,当AD过O′时,AD有最小值∵∠BDC=135°∴∠BO′C=90°∴△BO′C为等腰直角三角形∴∠ACO′=45°+45°=90°∴AO′=5又O′B=O′C=

3、4∴AD=5-4=12.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()A.B.C.5D.解:连接AE∵AD为⊙O的直径∴∠AEB=∠AED=90°∴E点在以AB为直径的圆上运动当CE过圆心O′时,CE有最小值为3.如图,在△ABC中,AC=3,BC=,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1B.2C.D.解:连接CD∴∠PAC=∠PDC=∠ACB=45°∴∠BDC=135°如图,当AD过圆心O′时,AD有最小值∵∠BDC=

4、135°∴∠BO′C=90°∴O′B=O′C=4又∵∠ACO′=90°∴AO′=5∴AD的最小值为5-4=14.如图,⊙O的半径为2,弦AB的长为,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的面积的最大值是()A.B.C.D.5.如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是(  )A.B.C.D.6.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线绕O点旋转时,CD的最小值为__________解:连接DM∵D是弦E

5、F的中点∴DM⊥EF∴点D在以A为圆心的,OM为直径的圆上运动当CD过圆心A时,CD有最小值,连接CM∵C为弧AB的中点∴CM⊥AB∴CD的最小值为7.如图,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________解:连接OD∵D为弦AP的中点∴OD⊥AP∴点D在以AO为直径的圆上运动当CD过圆心O′时,CD有最小值,过点C作CM⊥AB于M∵OB=OC,∠ABC=60°∴△OBC为等边三角形∴OM=,CM=∴O′C=∴CD的最小值为8.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段B

6、C边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是().A.B.6C.D.4【思路探究】根据E为AB中点,BE=B′E可知,点A、B、B′在以点E为圆心,AE长为半径的圆上,D、E为定点,B′是动点,当E、B′、D三点共线时,B′D的长最小,此时B′D=DE-EB′,问题得解.【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心,AB长为直径的圆上,如图所示.B′D的长最小值=DE-EB′=.故选A.【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,

7、当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E、B′、D三点共线时,等号成立.9.如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是.【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问题得解.【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。