资源描述:
《利用一次函数解决实际问题.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、21.4一次函数的应用教学目标:1.经历应用一次函数解决实际问题的过程。2.提高从文字、表格、图像中获取信息的能力。3.通过实际问题,领悟函数与方程的关系及其应用价值。教学重点:应有一次函数解决实际问题。难点:领会数学建模思想,提高解决问题的能力。1、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式.2、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每
2、月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,求y与x之间的函数关系式.试着做做3.若点(1,2)及(m,3)都在正比例函数y=kx的图象上,求m的值。4已知直线y=kx+b经过点(-2,-1)和点(2,-3),求这条直线的函数解析式。5.某一次函数的图象平行于直线y=0.5x,且过点(4,7),求函数解析式。例1去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某居民每月
3、应交水费是用水量的函数,其函数图象如图所示:(1)分别写出x≤5和x>5时,y与x的函数解析式;(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准。(3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨?xOy583.66.3交流合作乐在其中例2、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒)。(1)、设购买
4、乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式。(2)就乒乓球盒数讨论去哪家商店购买合算?例3、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡。使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示。(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式;(2)两种租书方式每天租书的收费分别是多少元?(3)若两种租书卡的使用期限均为一年,则在这一年中如
5、何选择这两种租书方式比较合算?x1002050oy(元)(天)租书卡会员卡例4预防“非典”期间,某种消毒液A市需要6吨,B市需要8吨,正好M市储备有10吨,N市储备有4吨,预防“非典”领导小组决定将这14吨消毒液调往A市和B市,消毒液的运费价格如下表。设从M市调运x吨到A市。(1)求调运14吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费的多少?终点起点ABM60100N3570回味无穷:1、函数y=2x图象经过点(0,)与点(1,),y随x的增大而;2、函数y=(a-2)x的图象经过
6、第二、四象限,则a的范围是;3、函数y=(1-k)x中y随x的增大而减小,则k的范围是.02增大a<2k>14、直线y=-3x-6与x轴的交点坐标是,与y轴的交点坐标为.5、直线y=3x-1经过象限直线y=-2x+5经过象限一、三、四一、二、四(-2,0)(0,-6)6、直线y=kx+b(k<0,b<0)经过象限。7、若直线y=kx+b经过一、二、四象限,则k0,b0.8、直线y=kx+b的图象如图所示,确定k、b符号:二、三、四<>oyxoyxK<0,b>0k>0,b<09、已知一次函数y=(m-1)x+2m+1
7、(1)若图象经过原点,求m的值;(2)若图象平行于直线y=2x,求m的值;(3)若图象交y轴于正半轴,求m的取值范围;(4)若图象经过一、二、四象限,求m的取值范围。(5)若图象不过第三象限,求m的取值范围。(6)若随的增大而增大,求m的取值范围。10、已知一次函数y=x+b与y=2x+a的图像都经过A(-2,0),且与y轴分别交于B、C两点,求△ABC的面积解:因为一次函数y=x+b的图像过A(-2,0),所以0=-2+b,所以b=2,所以y=x+2.又因为一次函数y=2x+a的图像过A(-2,0),所以0=2×
8、(-2)+a所以a=4,所以y=2x+44c如图:2BAO所以△ABC的面积=(4-2)×2÷2=2YX11、若直线y=3x+b与两坐标轴所围成的三角形的面积为6,求b的值。12、无论m为何值,直线y=x+2m与y=-x+4的交点不可能在()A、第一象限B、第二象限C、第三象限D、第四象限13、已知y=y1+y2,其中y1与x成正比例,y2与(x-2)成正比