欢迎来到天天文库
浏览记录
ID:49968167
大小:1001.50 KB
页数:23页
时间:2020-03-05
《解直角三角形第课时.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、28.2解直角三角形(1)复习30°、45°、60°角的正弦值、余弦值和正切值如下表:锐角a三角函数30°45°60°sinacosatana对于sinα与tanα,角度越大,函数值也越大;(带正)对于cosα,角度越大,函数值越小。问题:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角a一般要满足50°≤a≤75°.现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)?(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角a等于多少(精确到1°)?这时人是否能够安全使用这个梯子?这样的
2、问题怎么解决问题(1)可以归结为:在Rt△ABC中,已知∠A=75°,斜边AB=6,求∠A的对边BC的长.问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的距离是使用这个梯子所能攀到的最大高度.因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m所以BC≈6×0.97≈5.8由计算器求得sin75°≈0.97由得ABαC对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6,求锐角a的度数由于利用计算器求得a≈66°因此当梯子底墙距离墙面2.
3、4m时,梯子与地面所成的角大约是66°由50°<66°<75°可知,这时使用这个梯子是安全的.ABCα在图中的Rt△ABC中,(1)根据∠A=75°,斜边AB=6,你能求出这个直角三角形的其他元素吗?探究ABCα能6=75°在图中的Rt△ABC中,(2)根据AC=2.4,斜边AB=6,你能求出这个直角三角形的其他元素吗?探究ABCα能62.4事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.ABabcC解直角三角形:在直角三角形
4、中,由已知元素求未知元素的过程.在解直角三角形的过程中,一般要用到下面一些关系:解直角三角形(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系(1)三边之间的关系(勾股定理)ABabcC在解直角三角形的过程中,一般要用到下面一些关系:例1如图,在Rt△ABC中,∠C=90°,解这个直角三角形解:ABC例2如图,在Rt△ABC中,∠B=35°,b=20,解这个直角三角形(精确到0.1)解:∠A=90°-∠B=90°-35°=55°ABCabc2035°你还有其他方法求出c吗?1.在Rt△ABC中,∠C=90°,根据下列条件解直
5、角三角形;(1)a=30,b=20;练习解:根据勾股定理ABCb=20a=30c在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;(2)∠B=72°,c=14.ABCbac=14解:解决有关比萨斜塔倾斜的问题.设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m所以∠A≈5°28′可以求出2001年纠偏后塔身中心线与垂直中心线的夹角.你愿意试着计算一下吗?ABCABC例32008年10月15日“神舟”7号载人航天飞船发
6、射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.·OQFPα如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点.的长就是地面上P、Q两点间的距离,为计算的长需先求出∠POQ(即α)例题解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.∴PQ
7、的长为当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km·OQFPα例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)?分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,α=30°,β=60°Rt△ABC中,α=30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.ABCDαβ仰角水平线俯角仰角与俯角解:如图,
8、a=30°,β=60°,AD=120.答:这栋楼高约为277.1mABCDαβ1.建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m)ABCD
此文档下载收益归作者所有