欢迎来到天天文库
浏览记录
ID:49091346
大小:48.50 KB
页数:4页
时间:2020-02-28
《平行线的性质导学案.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、5.3.1平行线的性质导学案一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何叙述的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.(板书课题)2.学习目标:(1)能叙述平行线的三条性质.(2)能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习第一层次学习:1.自学指导:(1)自学内容:课本P18的内容.(2)自学时间:8分钟.(3
2、)自学要求:正确画图、测量、验证、归纳.(4)探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交(如图1所示).②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:(1)师助生:①明了学情:了解学生围绕探究提纲进
3、行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.(2)生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:(1)平行线的性质1及其几何表述.(2)经历平行线的性质1的探究过程,体会研究几何图形的一般方法.第二层次学习:1.自学指导:(1)自学内容:课本P19的内容.(2)自学时间:8分钟.(3)自学要求:阅读教材,重要的部分做好圈点,疑点处做好记号.(4)自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字
4、语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.a.从∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.b.从∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.c.从∠1=110°,可以知道∠4是多
5、少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对部分感到困难的学生进行点拨引导.(2)生助生:小组内相互交流、研讨、订正.4.强化:(1)平行线的性质1、2、3及其几何表述.(2)判定与性质的区别:从角的关系得
6、到两直线平行,就是判定;从已知直线平行得到角相等或互补,就是性质.(3)练习:课本P20“练习”第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用规范性的几何语言.不足的是师生之间的互动配合和默契程度有待加强.
此文档下载收益归作者所有