欢迎来到天天文库
浏览记录
ID:48660413
大小:502.50 KB
页数:16页
时间:2020-01-18
《阅读与思考 为什么√2不是有理数.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六章为什么说不是有理数正知识网络乘方开方平方根立方根开平方开立方互为逆运算算术平方根实数有理数无理数运算专题复习【例1】求下列各数的平方根:【例2】求下列各数的立方根:【归纳拓展】解题时,要注意题目的要求,是求平方根、立方根还是求算术平方根,要注意所求结果处理.专题一开方运算【迁移应用1】求下列各式的值:答案:①20;②;③;④.【例2】在-7.5,,4,,,,中,无理数的个数是()A.1个B.2个C.3个D.4个【归纳拓展】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.B专题二实数的有关概念【迁移应用2】(1)在-,0.618,,,中,负有理数的个数是(
2、)A.1个B.2个C.3个D.4个AA.1个B.2个C.3个D.4个(2)下列实数,,,3.14159,,-中,正分数的个数是()B【注意】,等不属于分数,而是无理数.【例3】(1)位于整数和之间.(2)实数a,b在数轴上的位置如图所示,化简=.a0b-2a【归纳拓展】1.实数与数轴上的点是一一对应的关系;2.在数轴上表示的数,右边的数总是比左边的数大.专题三实数的估算及与数轴的结合45【迁移应用3】如图所示,数轴上与1,对应的点分别是为A、B,点B关于点A的对称点为C,设点C表示的数为x,则=.012BCA【例4】(1)(2)60y-1【例5】已知,,,则=,=.0.0
3、813837.77【例6】计算:=.专题四实数的运算【归纳拓展】开立方运算时要注意小数点的变化规律,开立方是三位与一位的关系,开平方是二位与一位的关系.【迁移应用4】计算:答案:(1)5.79;(2)5.48课堂小结1.通过对本章内容的复习,你认为平方根和立方根之间有怎么样的区别与联系?2.什么是实数?3.实数的运算法则与有理数的运算法则有什么联系?课后训练1.写出两个大于1小于4的无理数____、____.2.的整数部分为____.小数部分为_____.3.一个立方体的棱长是4cm,如果把它体积扩大为原来的8倍,则扩大后的立方体的表面积是_______.34.求下列各式
4、中的x.(1)(x-1)2=64;(2)(x=9或-7)(x=-18)5.比较大小:与.解:∵(-2+)-(-2+)=-2++2-=->0∴-2+>-2+另解:直接由正负决定-2+>-2+6.若求-ab的平方根.解:∵|3a+4|≥0且(4b-3)2≥0而|3a+4|+(4b-3)2=0∴|3a+4|=0且(4b-3)2=0∴a=,b=.∴-ab=-(×)=1,∴1的平方根是±1.7.计算:解:原式=4.6;解:原式=-4.
此文档下载收益归作者所有