欢迎来到天天文库
浏览记录
ID:48467667
大小:535.50 KB
页数:20页
时间:2020-01-18
《数学人教版八年级上册角平分线的性质.3角的平分线的性质.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、角平分线的性质OABNMC授课者:黄盛锴复习提问1、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12复习提问2、点到直线距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。OPAB我的长度如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?CADB你能由上面的探究得出作已知角的平分线的方法吗?探究1:E角的平分线的作法证明:在△ACD和△ACB中AD=AB(已知)DC
2、=BC(已知)CA=CA(公共边)∴△ACD≌△ACB(SSS)∴∠CAD=∠CAB(全等三角形的对应边相等)∴AC平分∠DAB(角平分线的定义)尺规作角的平分线ABOMNC画法:1.以O为圆心,适当长为半径作弧,交OA于M,交OB于N.2.分别以M,N为圆心.大于1/2MN的长为半径作弧.两弧在∠AOB的内部交于C.3.作射线OC.射线OC即为所求.ABMNC为什么OC是角平分线呢?O想一想:已知:OM=ON,MC=NC。求证:OC平分∠AOB。证明:在△OMC和△ONC中,OM=ON,MC=NC,OC=OC,∴△OMC≌△
3、ONC(SSS)∴∠MOC=∠NOC即:OC平分∠AOB(1)实验:将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?(2)猜想:角的平分线上的点到角的两边的距离相等.探究2已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D,E。求证:PD=PE证明:∵PD⊥OA,PE⊥OB(已知)∴∠PDO=∠PEO=90°(垂直的定义)在△PDO和△PEO中∴PD=PE(全等三角形的对应边相等)∠PDO=∠PEO∠AOC=∠BOCOP=O
4、P∴△PDO≌△PEO(AAS)角的平分线上的点到这个角的两边的距离相等。DPEAOBC证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出求证的途径,写出证明过程。角平分线的性质定理:角的平分线上的点到角的两边的距离相等用符号语言表示为:AOBPED12∵∠1=∠2PD⊥OA,PE⊥OB∴PD=PE(角的平分线上的点到角的两边的距离相等)推理的理由有三个,必须写完全,不能少了任何一个。角平分线的性质角的平分线上的点到角的两边的距离相等。BADOPEC
5、定理应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离。定理的作用:证明线段相等。图1图2B1:下列两图中,能表示直线l1上一点P到直线l2的距离的是()图1选择题:练习12:下列两图中,能表示角的平分线上的一点P到角的边上的距离的是()图1图1图2∵如图,AD平分∠BAC(已知)∴=,()在角的平分线上的点到这个角的两边的距离相等。BDCD(×)判断:∵如图,DC⊥AC,DB⊥AB(已知)∴=,()在角的平分线上的点到这个角的两边的距离相等。BDCD(×)∵AD平分∠BAC,DC⊥AC,DB⊥AB(已知
6、)∴=,()DBDC在角的平分线上的点到这个角的两边的距离相等。√不必再证全等如图,∵OC是∠AOB的平分线,又________________∴PD=PE()PD⊥OA,PE⊥OBBOACDPE角的平分线上的点到角的两边的距离相等练习2在△ABC中,∠C=90°,AD为∠BAC的平分线,DE⊥AB,BC=7,DE=3.求BD的长。EDCBA练习3◆这节课我们学习了哪些知识?小结1、“作已知角的平分线”的尺规作图法;2、角的平分线的性质:角的平分线上的点到角的两边的距离相等。∵OC是∠AOB的平分线,又PD⊥OA,PE⊥OB∴
7、PD=PE(角的平分线上的点到角的两边距离相等).EDOABPC几何语言:习题12.3第4、5题.作业
此文档下载收益归作者所有