孙广文(论文)2稿

孙广文(论文)2稿

ID:45586082

大小:220.34 KB

页数:18页

时间:2019-11-15

孙广文(论文)2稿_第1页
孙广文(论文)2稿_第2页
孙广文(论文)2稿_第3页
孙广文(论文)2稿_第4页
孙广文(论文)2稿_第5页
资源描述:

《孙广文(论文)2稿》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、基于MATLAB的图像去噪处理研究作者:孙广文指导教师:秦怡摘要:本文概述了小波阈值去噪的基本原理。对常用的几种阈值去噪方法进行了分析比较和仿真实现。最后结合理论分析和实验结果,讨论了一个完整去噪算法中影响去噪性能的各种因素。为实际的图像处理中,小波阈值去噪法的选择和改进提供了数据参考和依据。关键词:图像去噪;阈值;MATLAB0引言图像在生成和传输过程中常常因受到各种噪声的干扰和影响而使图像降质,这对后续图像的处理(如分割、压缩和图像理解等)将产生不利影响。噪声种类很多,如:电噪声、机械噪声、信道噪声和其他噪声。在图像处理中,图像去噪是一个永恒的主题,为了

2、抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行去噪预处理。计算机图像处理主要采取两大类方法:一是在空间域中的处理,即在图像空间中对图像进行各种处理;另一类是把空间域中的图像经过正交变换到频域,在频域里进行各种处理然后反变换到空间域,形成处理后的图像。人们也根据实际图像的特点、噪声的统计特征和频谱分布的规律,发展了各式齐样的去噪方法。其中最为直观的方法,是根据噪声能量一般集中于高频而图像频谱则分布于一个有限区间的这一特点,采用低通滤波方式来进行去噪,或对图像进行平滑处理等,这属于第一类图像处理方法。还有就是在频域进行处理,女IL傅立叶变换、小波基变

3、换。1图像与噪声人类获取外界信息有视觉、听觉、触觉、味觉等多种方法,但绝大部分(约80%)是来自视觉所接收的图像信息,即所谓“百闻不如一见”o而图像处理就是对图像息进行加工处理,以满足人的视觉心理和实际应用的要求。因此,图像处理技术的广泛研究和应用是必然的趋势。在分析和使用图像之前,需要对图像信号进行一系列处理。比如调整图像存储的格式,对图像进行去噪等等。图像处理是针对性很强的技术,根据不同用途、不同要求采用不同的处理方法。采用的方法是综合各学科较先进的成果而成的,如数学、物理学、心理学、生理学、医学、计算机科学、通信理论、信号分析、控制论和系统工程等,各学

4、科相互补充、相互渗透才使数字图像处理技术飞速发展。根据本文研究的内容,我们只探讨图像去噪这一图像预处理技术。一般来说,在图像采集、编码、传输、恢复的儿个基本步骤中,影响图像质量的因素很多。例如,现实图像中无用的信息对我们而言就是噪声,设备、环境、获取方法等因素也会引入许多噪声干扰。如电磁干扰、相片颗粒噪声、采集图像信号的传感器噪声、信道噪声、甚至滤波器产生的噪声等等。所以,为了提高图像的质量以及后续更高层次的处理,对图像进行去噪处理是不可缺少的重要环节,而寻求一种行之有效的去噪方法也是人们一直在进行的工作。2图像去噪方法2.1传统去噪方法对随时间变化的信号,

5、通常采用两种最基本的描述形式,即时域和频域。时域描述信号强度随时间的变化,频域描述在一定时间范围内信号的频率分布。对应的图像的去噪处理皿方法基本上可分为空间域法和变换域法两大类。前者即是在原图像上直接进行数据运算,对像素的灰度值进行处理。变换域法是在图像的变换域上进行处理,对变换后的系数进行相应的处理,然后进行反变换达到图像去噪的冃的。2.1.1空域滤波1均值滤波邻域平均法是一种局部空间域处理的算法。设一幅图像/&』)为NxN的阵列,处理后的图像为g(x,y),它的每个像素的灰度级由包含(兀』)领域的儿个像素的灰度级的平均值所决定,即用下式得到处理后的图像:

6、ggy)二}(2-1)M(m-M式中=0丄2…,N-l;s是以(兀,y)点为中心的邻域的集合,M是S内坐标总数。图像邻域平均法的处理效果与所用的邻域半径有关。半径愈大,则图像模糊程度也愈大。另外,图像邻域平均法算法简单,计算速度快,但它的主要缺点是在降低噪声的同时使图像产4:模糊,特别在边缘和细节处,邻域越大,模越厉害。2中值滤波中值滤波是一种非线性滤波由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所应用。在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而IL对滤除脉冲

7、干扰及图像扫描噪声最为有效。但是对一些细节多,特别是点、线、尖顶细节多的图像不宜采用中值滤波的方法。中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替。2.1.2频域低通滤波法在分析图像信号的频率特性时,一幅图像的边缘,跳跃部分以及颗粒声代表图像信号的高频分量,而大面积的背景区则代表图像信号的低频分量。用滤波的方法滤除其高频部分就能去掉噪声使图像得到平滑由卷积定理可知:G(u,v)=H(w,v)F(w,v)(2~2)式屮,F(u,v)是含噪声图像的傅里叶变换,G仏“是平滑后图像的傅里叶变换,H@,v)是低通滤波器传递函数。利

8、用H(心)使F(u°)的高频分量得到衰减,得到G(“

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。