欢迎来到天天文库
浏览记录
ID:45168490
大小:186.80 KB
页数:7页
时间:2019-11-10
《2019-2020年高三上学期第二次段考 数学理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高三上学期第二次段考数学理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则=()A.B.C.D.2.下列函数中,在其定义域内既是奇函数又是增函数的是()A.B.C.D.3.函数的一个单调递增区间是( )A.B.C.D.4.下列说法正确的是()A.B.C.命题“,使得”的否定是“,都有”D.都有5.已知数列为等差数列,其前项和为,,则为()A.110B.55C.50D.不能确定6.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是(
2、 )A.B.C.D.7.若,则的值为()A.B.C.D.8.圆的半径为3,一条弦为圆上任意一点,则的取值范围为()A.B.C.D.9.已知向量,的夹角为,且,则向量在向量方向上的投影为()A.B.C.D.10.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为()A.B.C.D.11.已知数列为等差数列,若恒成立,则的取值范围是( )A.B.C.D.12.函数所有零点之和为( )A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.等比数列的各项均为正数,且,则=________.14.已知函数,
3、则 .15.在中,角,,的对边分别为,,,,且,的面积为,则的值为.16.网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量万件与投入实体店体验安装的费用万元之间满足函数关系式.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是_______
4、_万元.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)在直角坐标系中,已知点.(Ⅰ)若向量的夹角为钝角,求实数的取值范围;(Ⅱ)若,点在三边围成的区域(含边界)上,,求的最大值.18.(本小题满分12分)已知等差数列的前项和为,已知,为整数,且的最大值为.(Ⅰ)求的通项公式;(Ⅱ)设,求数列的前项和.19.(本小题满分12分)已知函数.(Ⅰ)将函数的图像向右平移个单位得到函数的图像,若,求函数的值域;(Ⅱ)已知分别为中角的对边,且满足,,,求的面积.20.(本小题满分12分)
5、如图,四棱锥的底面为平行四边形,平面⊥平面,,点是线段上靠近点的三等分点.(Ⅰ)求证:(Ⅱ)若是边长为2的等边三角形,求直线与平面所成角的正弦值.21.(本小题满分12分)已知正项数列的前项和为,且(Ⅰ)求的通项公式;(Ⅱ)设数列的前项和为,试比较与的大小.22.(本小题满分12分)已知函数.(Ⅰ)若函数恒有两个零点,求的取值范围;(Ⅱ)若对任意,恒有不等式成立.①求实数的值;②证明:江西省高安中学xx高三第二次段考试题理科数学参考答案123456789101112CBBBBCDCDAAC13.100 14.15.16.37.5ss
6、17.解:(1)由得又,与夹角为,所以;.......................................................5分(2)∵,即,解得,令,由图知,当直线过点时,取得最大值1,故的最大值为1..10分18.解:(1)由,为整数知等差数列的公差为整数.又,故,,解得,因此数列的通项公式为............................................6分(2)因为,所以,①,②②式减①式得,,整理得,因此....................................
7、....................12分19.解:,.............................................................3分(1)平移可得,....................................4分∵,∴,.....................................5分当时,;当时,.......................6分∴所求值域为...................................................
8、......7分(2)由已知及正弦定理得:,.............8分∴,∵,∴,由得,又,∴,..............................................10分由正弦定理得:,...
此文档下载收益归作者所有