资源描述:
《全国各地2017年高考数学(文)二模试题分类汇编:专题08立体几何》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、专题08立体几何一、选择题1.【2017安徽阜阳二模】某儿何体的三视图如图所示,则该儿何体的体积为()33【答案】A【解析】解:如團所示,该几何体是正方体中的四棱锥P-ABCD,其中正方体的棱长为2,该几何体11/4的体积为:=X2=-・本题选择A选项.点睛:空间几何体的三视图是分别从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间儿何体的三视图时,先根据俯视图确定儿何体的底面,然后根据正视图或侧视图确定儿何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确
2、定几何体的形状,即可得到结果.2.【2017专题08立体几何一、选择题1.【2017安徽阜阳二模】某儿何体的三视图如图所示,则该儿何体的体积为()33【答案】A【解析】解:如團所示,该几何体是正方体中的四棱锥P-ABCD,其中正方体的棱长为2,该几何体11/4的体积为:=X2=-・本题选择A选项.点睛:空间几何体的三视图是分别从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间儿何体的三视图时,先根据俯视图确定儿何体的底面,然后根据正视图或侧视图确定儿何体的侧棱与侧面的特
3、征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.2.【2017广东佛山二模】某几何体的三视图如图所示,则该几何体的体积为()B8-討A.S--7T3C.24—D.24+龙【答案】AI解析】几何体为-个正方俶边长为2)去掉八分之-个球(半径为空体积为2—4好=8-竺’选33A.1.【2017湖南娄底二模】一个几何体的三视图如下图所示,其中正视图和侧视图都是腰长为n2的等腰直角三角形,俯视图是圆心角为一的扇形,则该儿何体的表面积为()2A.2B.tt+4C.+4D.(V^+l)龙
4、+4【答案】B该几何体是一个底面半径和高都是2的圆锥的四分之一,所以该几何体的表面积为*(兀・22+龙・2・2血)+2丄・2?=(血+1)兀+4,故选D.1.[2017宁夏中卫二模】一个几何体的三视图如图所示,该几何体的体积为7,则G等于()wasA.2B.—C.1D.—12【答案】B【解析】由三视图知几何体是正方体削去一个角,如图:所以几何体体积y=23-xLxax2x2=^~=7,解得•故选氏3232点睛:思考三视图还原空间儿何体首先应深刻理解三视图Z间的关系,遵循“长对正,高平齐,宽相等”的基
5、本原则,其内涵为正视图的高是儿何体的高,长是儿何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地血的直观图;2、观察正视图和侧视图找到儿何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.1.[2017陕西汉中二模】如图中的三个直角三角形是一个体积为的儿何体的三视图,则该儿何体外接球的面积(单位:肋彳)等于().A.55龙B.75龙C.77/rD.65兀【答案】C从题设中提
6、供的三视图中的图形信息及数据信息可知该几何体是底而是边长分别为5,6的直角三角形的三棱锥,如图,设高为力,由题设可得9=1x1x5x6/7=5/2=20,所以/?=4,12由题意该儿何体的外接球的直径即是长方体的对角线,即2/?=a/42+52+62=V77,则其表面积S=4ttR2=77^,应选答案C。1.[2017重庆二诊】如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其屮DD严1,AB=BC=AAl=2f若此几何体的俯视图如图2所示,则可以作为其正视图的是()【解析】由
7、题意,根据该几何体的直观團和俯视图知,其正视團的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除巧D,而在三视團中看不见的棱用虚线表示,故排除A,所以正确答案为C.点睛:此题主要考查空间几何体的三视图等有关方面的知识,屈于中低档题型,也是最近几年高考的必考题型.此题有与以往有不同之处,就是给出了空间几何体的三视图各俯视图,去寻找正视图,注意的是,由实物图画三视图或判断选择三视图吋,需要注意“长对正、高平齐、宽相等”的原则,还看得见棱的画实线,看不见的棱要画虚线.2.[2017福建4月质检】如图,
8、网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为()A.4壬B.4^2C.6D.2a/5【答案】C由题可得立体图形:贝ijAB=AC=4,PC=V16+4=2a/5,BC=4^2AP=BP=J16+16+4=6,所以最长棱为6点睛:考察三视图1.【2017福建4月质检】己知三棱锥P-ABC的三条侧棱两两互相垂直,且AB=^,BC=*,AC=2,则此三棱锥的外接球的体积为()A.—兀3B.8a/27C3D.32—7T3【答案