线性方程组解的结构(I)

线性方程组解的结构(I)

ID:42204719

大小:927.01 KB

页数:24页

时间:2019-09-10

线性方程组解的结构(I)_第1页
线性方程组解的结构(I)_第2页
线性方程组解的结构(I)_第3页
线性方程组解的结构(I)_第4页
线性方程组解的结构(I)_第5页
资源描述:

《线性方程组解的结构(I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一、齐次线性方程组解的结构二、一般线性方程组解的结构第三章线性方程组§3.6线性方程组解的结构2/24一、 齐次线性方程组解的结构1解的性质性质1(1)的两个解的和还是(1)的解.性质2(1)的一个解的倍数还是(1)的解.性质3(1)的解的任一线性组合还是(1)的解.(1)3/24齐次线性方程组(1)一组解,若满足ii)(1)的任一解都能表成     的线性组合.i)线性无关;则称为(1)的一个基础解系.2基础解系定义4/243基础解系的存在性定理在齐次线性方程组有非零解的情况下,它有基础解系,并

2、且基础解系所含解的个数等于,其中n是未知量的个数,5/24证:则(1)可改写成若,不妨设(2)6/24代入自由未知量,也即(1)的个解用组数就得到(2)的  个解,下证为(1)的基础解系.①线性无关.7/24事实上,若②任取(1)的一个解即线性无关.故线性表出.可由8/24事实上,由是(1)的解,得也为(1)的解,即为(1)的解.它与的最后个分量相同,即自由未知量的值相同,所以它们为同一个解..故由①②知,为(1)的一个基础解系.9/24例1求齐次线性方程组的基础解系.解:对方程组的系数矩阵作初等

3、行变换化阶梯阵10/24令 得令 得原方程组的解为原方程的基础解系为11/24附:求基础解系的一般方法对方程组(1)的系数矩阵A作初等行变换,化A为行最简形.不妨设初等行变换第一步:12/24写出方程组(1)的一般解:第二步:第三步:为自由未知量.代入自由未知量,用组数得出方程组(1)的解:13/24向量组      即为方程组(1)的一个基础解系.练习求齐次线性方程组的基础解系.14/24推论1任一线性无关的与(1)的某一基础解系等价的向量组都是(1)的基础解系.设为(1)的一个基础解系,线性无

4、关,且与等价,且可由线性表出,所以 也为(1)的解证:则任取(1)的一个解,则可由从而可由线性表出.线性表出,也是(1)的基础解系.15/24推论2若齐次线性方程组(1)的系数矩阵的秩为r,则(1)的任意n-r个线性无关的解都是(1)的基础解系.设为(1)的一个基础解系,证:为(1)的n-r个线性无关的解,考察向量组知  的秩为n-r.与都是向量组 的极大无关组.与      等价.推论1得证.16/244齐次线性方程组解的结构若为齐次线性方程组(1)的一个基础解系,则(1)的全部解(或通解)为令

5、则就是齐次线性方程组(1)的全部解的集合.17/24二、一般线性方程组解的结构设线性方程组则齐次线性方程组(3)(4)称为(3)的导出组.18/241解的性质性质1非齐次线性方程组(3)的两个解   的差为其导出组(4)的解.性质2非齐次线性方程组(3)的一个解 与其导出组(4)的一个解的和仍为(3)的解.注非齐次线性方程组两个解的和及一个解的倍数一般不再是该非齐次线性方程组的解.19/242非齐次线性方程组解的结构定理8如果 是非齐次线性方程组(3)的一个为其导出组(4)的一个解.从而,方程组(

6、3)的全部解(通解)为为导出组(4)的一个基础解系.特解,那么方程组(3)的任一个解都可以表成20/24例2求解方程组解:对方程组的增广矩阵作初等行变换21/24由令即得原方程组的一个特解得由 ,原方程组的导出组与以下方程组同解原方程组有解,并有22/24令,得即为导出组的一个基础解系.令,得故原方程组的通解为.23/24求出(3)的导出组(4)的一个基础解系3求一般线性方程组(3)的全部解的步骤第二步:第三步:写出(3)的全部解(通解)若有无穷多个解,先写出(3)的一个特解对(3)的增广矩阵作初

7、等行变换化阶梯阵,第一步:根据阶梯阵判断(3)是否有解.24/24推论非齐次线性方程组(3)在有解的条件下,解是唯一的充要条件是它的导出(4)只有零解.证:“”设(3)有唯一解.若其导出组(4)有非零解,则有也为(4)的解,从而皆为(3)的解.矛盾.“”假若(3)有两个不同的解,则为(4)的一个非零解.矛盾.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。