【教学设计】《1

【教学设计】《1

ID:40681859

大小:30.50 KB

页数:6页

时间:2019-08-06

【教学设计】《1_第1页
【教学设计】《1_第2页
【教学设计】《1_第3页
【教学设计】《1_第4页
【教学设计】《1_第5页
资源描述:

《【教学设计】《1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、《1.1.2简单组合体的结构特征》教学设计本课时编写:成都市第二十中学付江平【教学目标】1.知识与技能:能够描述现实生活中简单物体的结构.2.过程与方法:学会通过建立几何模型来研究空间图形,培养学生的数学建模思想;3.情感态度价值观:用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想【教学重难点】1.教学重点:掌握简单组合体的概念,学会观察、分析图形,提高空间想象能力和几何直观能力。2.教学难点:描述简单组合体的结构特征.【教学策略与方法】1.教学方法:启发讲授式与问题探究

2、式.2.教具准备:多媒体【教学过程】教学流程教师活动学生活动设计意图环节一:课堂导入提出问题①请指出下列几何体是由哪些简单几何体组合而成的.图1②观察图1,结合生活实际经验,简单组合体有几种组合形式?③请你总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?结合问题情境展开思考利用问题引入,激发学生学习兴趣环节二:新课讲解思路1在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师指出课题:简单几何体的结构特征.学生思考通过思考引出本节所学新知思路2现实世界中的

3、物体表示的几何体,除柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体,这节课学习的课题是:简单几何体的结构特征.考点1由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.考点2常见的组合体有三种:多面体与多面体的组合;多面体与旋转

4、体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.考点3常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.例1请描述如图2所示的组合体的结构特征.图2【规范解答】图2

5、(1)是由一个圆锥和一个圆台拼接而成的组合体;图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.点评:本题主要考查简单组合体的结构特征和空间想象能力.[来源:学#科#网Z#X#X#K]整理总结归纳练习应用通过例题讲解规范答题步骤例2连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.(1)(2)图3【规范解答】

6、如图3(1),正方体ABCD—A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.由点O1、O2、O3、O4、O5、O6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图3(2)所示.【总结与反思】本题中的八面体,事实上是正八面体——八个面都是全等的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜

7、”些,并且“后面的”线,即被前面平面所遮住的线,如图中的O1O5、O6O5、O5O2、O5O4应画成虚线.例3请想一想正方体的截面可能是什么形状的图形?【规范解答】静止是相对的,运动是绝对的,点动成线,线动成面.用运动的观点看几何问题的形成,容易建立空间想象力,这样对于分割和组合图形是有好处的.明确棱柱、棱锥、棱台等多面体的定义及圆柱、圆锥、圆台的生成过程,以及柱、锥、台的相互关系,对于我们正确的割补图形也是有好处的.对于正方体的分割,可通过实物模型,实际切割实验,还可借助于多媒体手段进行切割实验.对于切割所得的平面图形可根据它的定义进行证明,从而判断出各个截

8、面的形状.探究:本题考查立体几何的空间

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。