欢迎来到天天文库
浏览记录
ID:39595879
大小:368.50 KB
页数:11页
时间:2019-07-06
《直线与圆的位置关系1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.2.2直线与圆的位置关系(3)复习回顾1.切线的判定定理2.切线的判定方法:(1)定义(3)切线的判定定理.(2)d=r直线与圆相切已知直线过圆上一点:(连半径,证垂直)不明确直线是否过圆上一点:(作垂直,证半径)经过半径的外端并且垂直于这条半径的直线是圆的切线直线和圆有唯一公共点时,叫做直线和圆相切。切线的性质定理:圆的切线垂直于过切点的半径。在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长·OPAB定理形成切线与切线长的区别与联系:(1)切线是一条与圆相切的直线;(2)切线长是指切线上某一点与切点间的线段的长。·opAB如
2、图,PA、PB是⊙O的切线,A、B为切点。如果连结OA、OB、OP,图中的PA与PB,∠APO与∠BPO有什么关系?探究∵PA、PB是⊙O的切线,A、B为切点∴OA⊥PA,OB⊥PB又∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP∴PA=PB,∠APO=∠BPO结论切线长定理:从圆外一点可以引圆的两条切线,切线长相等,这一点和圆心的连线平分两条切线的夹角。·opAB符号语言∵PA、PB是⊙O的切线,A、B为切点∴PA=PB,∠APO=∠BPO猜想如图,若连接AB,则OP与AB有什么关系?分析∵PA、PB是⊙O的切线,A、B为切点∴PA=PB,∠AP
3、O=∠BPO∴OP⊥AB,且OP平分ABCD归纳从圆外一点引圆的两条切线,圆心和这一点的连线垂直平分切点所成的弦;平分切点所成的弧。AD与BD相等吗?⌒⌒例1已知,如图,PA、PB是⊙O的两条切线,A、B为切点.直线OP交⊙O于点D、E,交AB于C.(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形.(3)如果PA=4cm,PD=2cm,求半径OA的长.AOCDPBE解:(1)OA⊥PA,OB⊥PB,OP⊥AB(2)△OAP≌△OBP,△OCA≌△OCB△ACP≌△BCP.(3)设OA=xcm,则PO=PD+x=2+x(cm)在Rt△OAP中,
4、由勾股定理,得PA2+OA2=OP2即42+x2=(x+2)2解得x=3cm所以,半径OA的长为3cm.利用切线长定理进行计算如图,PA、PB分别切⊙O于A、B,CD与⊙O切于点E,分别交PA,PB于C、D,已知PA=7cm,求△PCD的周长.C·OPBDAE解:∵PA、DC为⊙O的切线∴DA=DE(切线长定理)同理可证CE=CB,PA=PB又∵C△PCD=PD+PC+CD=PD+PC+DE+CE=PA+PB=7+7=14cm练习ID内切圆和内心的定义:与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心..
5、o外接圆圆心:三角形三边垂直平分线的交点。外接圆的半径:交点到三角形任意一个顶点的距离。三角形外接圆三角形内切圆.o内切圆圆心:三角形三个内角平分线的交点。内切圆的半径:交点到三角形任意一边的垂直距离。AABBCC1、如图1,△ABC是⊙O的三角形。⊙O是△ABC的圆,点O叫△ABC的,它是三角形_________的交点。外接内接外心三边垂直平分线13、如图2,△DEF是⊙I的三角形,⊙I是△DEF的圆,点I是△DEF的心,它是________的交点。2、定义:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的,这个三角形叫做____________A
6、BCO.图1IDEF.图2三角形的内切圆内心圆的外切三角形外切内切内三角形内角平分线已知:△ABC是⊙O外切三角形,切点为D,E,F。若BC=14cm,AC=9cm,AB=13cm。求AF,BD,CE。ABCDEFxxyyOzz解:设AF=Xcm,BD=Ycm,CE=Zcm则AE=AF=Xcm,DC=BD=Ycm,AE=EC=Zcm依题意得方程组x+y=13y+z=14x+z=9解得:X=4Y=9Z=5
此文档下载收益归作者所有