轨迹问题解题策略

轨迹问题解题策略

ID:38814773

大小:226.02 KB

页数:3页

时间:2019-06-19

轨迹问题解题策略_第1页
轨迹问题解题策略_第2页
轨迹问题解题策略_第3页
资源描述:

《轨迹问题解题策略》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、轨迹问题的解题策略对于初中数学中动点轨迹的问题,一般有两种情况:线段或圆弧.在研究动点问题时,可以在运动中寻找不变的量,即不变的数量关系或位置关系.如果动点的轨迹是一条线段,那么其中不变的量便是该动点到某条直线的距离始终保持不变;如果动点的轨迹是一段圆弧,那么其中不变的量便是该动点到某个定点的距离始终保持不变.因此,解决此类动点轨迹问题便可转化为寻找定直线或定点,下面就以原文中两个例题来阐明这类动点轨迹问题的解题策略.一、运动路径是线段例1(2012年张家界中考题)如图1,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是

2、线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_______.解析此题中主动点是P,动点G是因点P的变化而变化,动点P在运动过程中始终保持不变的量是AP+BP=6.另外,题中还有不变的量是△APE和△PBF始终为等边三角形.解答此问题需牢牢把握住这两个不变的量,而既然是求动点G的运动轨迹,则需考虑点G是到某条直线的距离保持不变,还是到某个定点的距离保持不变,显然此题首先考虑的是点G是否到直线AB的距离保持不变,因此尝试作GQ⊥AB,垂足为Q.又根

3、据△APE和△PBF均是等边三角形这一性质,不难想到分别作EM⊥AB和FN⊥AB,垂足分别为M,N(如图2).此时容易得到EM=AP,FN=BP,所以EM+FN=(AP+BP)=3.再根据梯形中位线的性质,可得到CQ=(EM+FN)=.3因此得到点G到直线AB的距离始终保持不变,从而得证点G的运动轨迹是一条线段.而此时就点G的运动路径长,便可转化为求点Q的运动路径长,这时只要分别求出点P在C点和D点时AQ的长度即可.当点P在点C时(如图3),MQ1=MN=,所以AQ1=AM+MQ1=+=2.当点P在点D时(如图4),MQ2=MN=,

4、所以AQ2=AM+MQ2==4.所以点G运动的路径长为4-2=2.事实上,点G在运动过程中,MQ的长度也是始终保持不变,因此G的运动路径长度就是M点的运动路径长度,而整个运动过程中M点是从AC的中点运动到AD的中点,即M1M2(如图5).笔者认为,如果用这样的方式去分析问题,那么最终学生头脑中对整个变化过程会有一个全面而清晰的了解.此题的解题思路中还体现了转化思想,对培养学生的数学思维是有积极作用的.二、运动路径是圆弧例2(2011年湖州中考题)如图6,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点

5、.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.3(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交予点E,过点O作直线ME的垂线,垂足为H(如图7).当点P从点O向点C运动时,点H也随之运动,请直接写出点H所经过的路径长.(不必写解答过程)解析(1)、(2)略.(3)此题中主动点是P,动点H是因点P的变化而变化.动点P在运动过程中始终保持不变的量是OH始终垂直ME,即日始终为垂足.而求动点H的运动轨迹,则需考虑点H是到某条直

6、线的距离始终不变,还是到某个定点的距离始终保持不变.由于OH⊥ME,连结OM后,△AMH始终为直角三角形,而斜边OM不变,因此根据直角三角形的性质容易得到动点日到DM的中点的距离始终不变,从而可得到点H的运动轨迹是一段圆弧.下面只需确定圆弧的度数即可,即要找到动点H的始点和终点,根据图形的变化容易分析得动点H无限接近点C,因此可将点C定为动点H的终点.当点P在O点时,点H在始点,记为H1,由对称性可知,此时点E的坐标为(3,0),作MN⊥OE,垂足为N,取DM的中点F,再连结FC、FH1(如图8).因为M点的坐标为(1,2),所以可

7、得MN=NE=2,所以得到∠MEN=45°,所以∠H1OE=45°,所以∠H1OC=45°.因为C,D,H1,M四点共圆,所以∠CFH1=90°.又因为FC=OM=,所以弧CH1的长为:,所以点H所经过的路径长为.以上两个例题刚好反映了初中数学轨迹问题中的两种典型情况.此类问题的解题策略便是确定动点到定直线的距离保持不变,还是到定点的距离保持不变.沿着这个思路走下去,便能找到变化过程中不变的量,从而找到解题的突破口.3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。