《2.2.2 椭圆的几何性质》课件

《2.2.2 椭圆的几何性质》课件

ID:37472155

大小:652.50 KB

页数:18页

时间:2019-05-12

《2.2.2 椭圆的几何性质》课件_第1页
《2.2.2 椭圆的几何性质》课件_第2页
《2.2.2 椭圆的几何性质》课件_第3页
《2.2.2 椭圆的几何性质》课件_第4页
《2.2.2 椭圆的几何性质》课件_第5页
资源描述:

《《2.2.2 椭圆的几何性质》课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.2椭圆的几何性质教学目标知识与技能目标了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.过程与方法目标(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程

2、的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗§2.1.2椭圆的简单几何性质.复习:1.椭圆的定义:到两定点F1、F2的距离之和为常数(大于

3、F1F2

4、)的动点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c2当焦点在X轴上时当焦点在Y轴上时二、椭圆简单的几何性质1、范围:-a≤x≤a,-b≤y≤b知椭圆落在x=±a,y=±b组成的矩形中oyB2B1A1A2F1F2cab椭圆的对称

5、性YXOP(x,y)P1(-x,y)P2(-x,-y)2、对称性:oyB2B1A1A2F1F2cab从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。3、椭圆的顶点令x=0,得y=?,说明椭圆与y轴的交点?令y=0,得x=?说明椭圆与x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分

6、别叫做椭圆的长半轴长和短半轴长。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)123-1-2-3-44y123-1-2-3-44y12345-1-5-2-3-4x12345-1-5-2-3-4x根据前面所学有关知识画出下列图形(1)(2)A1B1A2B2B2A2B1A14、椭圆的离心率离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:[2]离心率对椭圆形状的影响:0

7、就越圆[3]e与a,b的关系:标准方程范围对称性顶点坐标焦点坐标半轴长离心率a、b、c的关系

8、x

9、≤a,

10、y

11、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c2标准方程范围对称性顶点坐标焦点坐标半轴长离心率a、b、c的关系

12、x

13、≤a,

14、y

15、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c2

16、x

17、

18、≤b,

19、y

20、≤a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前例1已知椭圆方程为16x2+25y2=400,它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。108680解题的关键:1、将椭圆方程转化为标准方程明确a、b2、确定焦点的位置和长轴的位置例2.过适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于.解:(1)由题意,,又∵长轴在轴上,所以,椭圆的标准方程为.(2)由已知,,∴,,∴,所以椭圆的标准方

21、程为或.例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。答案:分类讨论的数学思想小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用

22、了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。再见

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。