欢迎来到天天文库
浏览记录
ID:36374947
大小:815.50 KB
页数:16页
时间:2019-05-10
《《2.2.2椭圆的几何性质(1)》课件2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、椭圆的简单几何性质(1)1复习:1.椭圆的定义:到两定点F1、F2的距离之和为常数(大于
2、F1F2
3、)的动点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c2当焦点在x轴上时当焦点在y轴上时2二、椭圆简单的几何性质1、范围:-a≤x≤a,-b≤y≤b知椭圆落在x=±a,y=±b组成的矩形中oyB2B1A1A2F1F2cab3椭圆的对称性YXOP(x,y)P1(-x,y)P2(-x,-y)42、对称性:oyB2B1A1A2F1F2cab从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不
4、变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。53、椭圆的顶点令x=0,得y=?,说明椭圆与y轴的交点?令y=0,得x=?说明椭圆与x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)6123-1-2-3-44y123-1-2-3-44y12345-1-5-2-3-
5、4x12345-1-5-2-3-4x根据前面所学有关知识画出下列图形(1)(2)A1B1A2B2B2A2B1A174、椭圆的离心率离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:[2]离心率对椭圆形状的影响:06、x7、≤a,8、y9、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-10、b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c29011、x12、≤a,13、y14、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c215、x16、≤b,17、y18、≤a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前10019、离心率等于:。焦点坐标是:。顶点坐标是:。1086解题的关键:1、将椭圆方程转化为标准方程明确a、b2、确定焦点的位置和长轴的位置11已知椭圆方程为6x2+y2=6它的长轴长是:。短轴长是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。2练习1.12例2.求适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于.解:(1)由题意,,又∵长轴在轴上,所以,椭圆的标准方程为.(2)由已知,,∴,,∴,所以椭圆的标准方程为或13例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点20、P(3,0),求椭圆的方程。答案:分类讨论的数学思想14小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。21、1516
6、x
7、≤a,
8、y
9、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-
10、b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c29011、x12、≤a,13、y14、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c215、x16、≤b,17、y18、≤a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前10019、离心率等于:。焦点坐标是:。顶点坐标是:。1086解题的关键:1、将椭圆方程转化为标准方程明确a、b2、确定焦点的位置和长轴的位置11已知椭圆方程为6x2+y2=6它的长轴长是:。短轴长是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。2练习1.12例2.求适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于.解:(1)由题意,,又∵长轴在轴上,所以,椭圆的标准方程为.(2)由已知,,∴,,∴,所以椭圆的标准方程为或13例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点20、P(3,0),求椭圆的方程。答案:分类讨论的数学思想14小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。21、1516
11、x
12、≤a,
13、y
14、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c2
15、x
16、≤b,
17、y
18、≤a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前10019、离心率等于:。焦点坐标是:。顶点坐标是:。1086解题的关键:1、将椭圆方程转化为标准方程明确a、b2、确定焦点的位置和长轴的位置11已知椭圆方程为6x2+y2=6它的长轴长是:。短轴长是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。2练习1.12例2.求适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于.解:(1)由题意,,又∵长轴在轴上,所以,椭圆的标准方程为.(2)由已知,,∴,,∴,所以椭圆的标准方程为或13例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点20、P(3,0),求椭圆的方程。答案:分类讨论的数学思想14小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。21、1516
19、离心率等于:。焦点坐标是:。顶点坐标是:。1086解题的关键:1、将椭圆方程转化为标准方程明确a、b2、确定焦点的位置和长轴的位置11已知椭圆方程为6x2+y2=6它的长轴长是:。短轴长是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。2练习1.12例2.求适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于.解:(1)由题意,,又∵长轴在轴上,所以,椭圆的标准方程为.(2)由已知,,∴,,∴,所以椭圆的标准方程为或13例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点
20、P(3,0),求椭圆的方程。答案:分类讨论的数学思想14小结:本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,我们运用了几何性质,待定系数法来求解椭圆方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想。
21、1516
此文档下载收益归作者所有