欢迎来到天天文库
浏览记录
ID:36719482
大小:654.96 KB
页数:38页
时间:2019-05-14
《非负曲率流形的体积增长估计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、中山大学硕士学位论文非负曲率流形的体积增长估计姓名:焦振华申请学位级别:硕士专业:基础数学指导教师:朱熹平2003.5.8非负曲率流形的体积增长估计基础数学姓名:焦振华导师:朱熹平教授摘要关于流形的定号曲率及其体积增长问题已有很多研究.对于一个黎曼流形Mn,若其截面曲率或Ricci曲率具有一个正的下界,由Bonnet—Myers定理(参考『11)可得M为一紧流形对于完备非紧的黎曼流形M”,若其Ricci曲率非负,由Bishop.Gromov体积比较定理(参考[12]或[21])可得其体积增长至多是欧氏的,即Vol(B(xo,r))2、满足上面条件的M“,Calabi-Yau(参考[20])证咀了其体积增长至少是线性的.(圆柱面就是满足曲率条件而其体积增长为线性的流形)际上两个结果,Ricci曲率非负的完备非紧致的n维黎曼流形体积增长满足:\cr≤Vol(B(xo,r))茎Cr“对于复流形的研究,Chen—Zhu(参考[3])给出了关于完备非紧的Kiihler流形的下面结论:若M“是一完备非紧的复n维Kiihler流形,其全纯双截曲率处处非负,而且至少有一点处为正,则M的体积增长满足Vol(B(xo,r))≥Cr“j皋文主要是受上面结论的启发,对于完备非紧的Kfihler流3、形M“,当其曲率在某一紧子集外具有非负性,给出了其体积增长估计f更具体地,本文得出下面的结论给定完备非紧的复n维Kiihler流形M“,如果在其某一紧子集K外截面曲率非负,而且"一Ⅳ上的全纯双截曲率为正,则M的体积增长满足Vol(B(xo,r))≥Crn.i7关键词:全纯双截曲率;Busem口nn函数?穷竭函数:KShler流形VolumeGrowthofNonnegativeCurvatureManifoldsPureMathematicsName:JiaoZhenhuaSupervisor:ProfessorZhuXipingABSTRA4、CTTherehavebeenmanyworksdealtwithproblems0nRiemannianmanifoldsMwhosecurvatureisofafixedsign,especlallyonvolumegrowthofmani‰lds,FbraRiemannianmanifoldM“,bytheclassicalBonnet.Myerstheoremfrefertof1]),MiscompactifthesectionalcurvatureortheRiccicurvatureofMhasapositivelowerboun5、d.IfM“iscompleteandnoncompartwithnonnegativeRiceicurva-ture,usingBishop—Gromovvolumecomparisontheorem(referto[12]or[21])wecangetthevolumegrowthofMisatmostastheEuclideanvolumegrowth0ntheotherhand,CalabiandYau(refertof201)showedthatthevolumegrowthofacompletenoncompactRiemanni6、anmanifoldhasnonnegativeRiccieurvaturejSatleastoflinear.Thenforacompletenoncompaetn.dimensionalRiemannianmanifoldMwithnonnegativeRiccicurvature,thevolunlegrowthofMsatisfies:cr茎VoI(B(zo,?1))曼Cr”,Forcomplexmanifolds,theresultsweremainly()nKahlermanifoldsInf31,Chen—Zhugavethef7、ollowingtheorem:IfM“isacompletenoncompactcomplexn,dimensionaIKghlermanifoldTheholomorphicbisectionalcurvaturei8nonnegativeeverywhereandatleast氇toilepointispositive.ThenthevolumegrowthofMsatisfies:Vof(B(x0,r))>Gr”.Inthispaperwemainlystudythevolumegrowthofacompletenotlconlpac8、tKihtermanifoldsatisfiescertainnonnegaLivecnrvatureconditions.AsUSUal.usingtheprop
2、满足上面条件的M“,Calabi-Yau(参考[20])证咀了其体积增长至少是线性的.(圆柱面就是满足曲率条件而其体积增长为线性的流形)际上两个结果,Ricci曲率非负的完备非紧致的n维黎曼流形体积增长满足:\cr≤Vol(B(xo,r))茎Cr“对于复流形的研究,Chen—Zhu(参考[3])给出了关于完备非紧的Kiihler流形的下面结论:若M“是一完备非紧的复n维Kiihler流形,其全纯双截曲率处处非负,而且至少有一点处为正,则M的体积增长满足Vol(B(xo,r))≥Cr“j皋文主要是受上面结论的启发,对于完备非紧的Kfihler流
3、形M“,当其曲率在某一紧子集外具有非负性,给出了其体积增长估计f更具体地,本文得出下面的结论给定完备非紧的复n维Kiihler流形M“,如果在其某一紧子集K外截面曲率非负,而且"一Ⅳ上的全纯双截曲率为正,则M的体积增长满足Vol(B(xo,r))≥Crn.i7关键词:全纯双截曲率;Busem口nn函数?穷竭函数:KShler流形VolumeGrowthofNonnegativeCurvatureManifoldsPureMathematicsName:JiaoZhenhuaSupervisor:ProfessorZhuXipingABSTRA
4、CTTherehavebeenmanyworksdealtwithproblems0nRiemannianmanifoldsMwhosecurvatureisofafixedsign,especlallyonvolumegrowthofmani‰lds,FbraRiemannianmanifoldM“,bytheclassicalBonnet.Myerstheoremfrefertof1]),MiscompactifthesectionalcurvatureortheRiccicurvatureofMhasapositivelowerboun
5、d.IfM“iscompleteandnoncompartwithnonnegativeRiceicurva-ture,usingBishop—Gromovvolumecomparisontheorem(referto[12]or[21])wecangetthevolumegrowthofMisatmostastheEuclideanvolumegrowth0ntheotherhand,CalabiandYau(refertof201)showedthatthevolumegrowthofacompletenoncompactRiemanni
6、anmanifoldhasnonnegativeRiccieurvaturejSatleastoflinear.Thenforacompletenoncompaetn.dimensionalRiemannianmanifoldMwithnonnegativeRiccicurvature,thevolunlegrowthofMsatisfies:cr茎VoI(B(zo,?1))曼Cr”,Forcomplexmanifolds,theresultsweremainly()nKahlermanifoldsInf31,Chen—Zhugavethef
7、ollowingtheorem:IfM“isacompletenoncompactcomplexn,dimensionaIKghlermanifoldTheholomorphicbisectionalcurvaturei8nonnegativeeverywhereandatleast氇toilepointispositive.ThenthevolumegrowthofMsatisfies:Vof(B(x0,r))>Gr”.Inthispaperwemainlystudythevolumegrowthofacompletenotlconlpac
8、tKihtermanifoldsatisfiescertainnonnegaLivecnrvatureconditions.AsUSUal.usingtheprop
此文档下载收益归作者所有