欢迎来到天天文库
浏览记录
ID:36168569
大小:98.50 KB
页数:3页
时间:2019-05-06
《《1.5.1曲边梯形的面积》教学案6》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《1.5.1曲边梯形的面积》教学案6一、学习目标1.通过对曲边梯形面积的探求,掌握好求曲边梯形的面积的四个步骤—分割、近似代替、求和、求极限;2通过求曲边梯形的面积、变速运动中的路程,初步了解定积分产生的背景.二、重点、难点重点:求曲边梯形的面积;难点:深入理解“分割、近似代替、求和、求极限”的思想.三、知识链接1、直边图形的面积公式:三角形,矩形,梯形;2、匀速直线运动的时间(t)、速度(v)与路程(S)的关系.四、学法指导探求、讨论、体会以直代曲数学思想.五、自主探究1、概念:如图,由直线x=a,x=b,x轴,曲线y=f(x)所围成的图形称
2、为.2、思考:如何求上述图形的面积?它与直边图形的主要区别是什么?能否将求这个图形的面积转化为求直边图形的面积问题?例1、求由抛物线y=x2与x轴及x=1所围成的平面图形的面积S.分析:我们发现曲边图形与“直边图形”的主要区别是,曲边图形有一边是线段,而“直边图形”的所有边都是线段。我们可以采用“以直代曲,逼近”的思想得到解决问题的思路:将求曲边梯形面积的问题转化为求“直边图形”面积的问题.解:(1)分割把区间[0,1]等分成n个小区间:过各区间端点作x轴的垂线,从而得到n个小曲边梯形,他们的面积分别记作(2)以直代曲(3)作和(4)逼近分割以
3、曲代直作和逼近当分点非常多(n非常大)时,可以认为f(x)在小区间上几乎没有变化(或变化非常小),从而可以取小区间内任意一点xi对应的函数值f(xi)作为小矩形一边的长,于是f(xi)△x来近似表示小曲边梯形的面积表示了曲边梯形面积的近似值。变式拓展:求直线x=0,x=2,y=0与曲线y=x2所围成的曲边梯形的面积.反思:例2:一辆汽车在笔直的公路上变速行使,设汽车在时刻的速度为(单位,求它在(单位:)这段时间内行使的路程(单位:).变式拓展:一辆汽车在笔直的公路上变速行使,设汽车在时刻的速度为(单位,求它在(单位:)这段时间内行使的路程(单位
4、:).反思:六、目标检测见学案七、作业布置P50B组1.2(1)(2)八、小结
此文档下载收益归作者所有