《3.1 空间向量及其运算-3.1.5 空间向量的数量积》导学案

《3.1 空间向量及其运算-3.1.5 空间向量的数量积》导学案

ID:36157149

大小:309.00 KB

页数:6页

时间:2019-05-06

《3.1 空间向量及其运算-3.1.5 空间向量的数量积》导学案_第1页
《3.1 空间向量及其运算-3.1.5 空间向量的数量积》导学案_第2页
《3.1 空间向量及其运算-3.1.5 空间向量的数量积》导学案_第3页
《3.1 空间向量及其运算-3.1.5 空间向量的数量积》导学案_第4页
《3.1 空间向量及其运算-3.1.5 空间向量的数量积》导学案_第5页
资源描述:

《《3.1 空间向量及其运算-3.1.5 空间向量的数量积》导学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《3.1.5空间向量的数量积》导学案2教学过程一、问题情境1.平面向量数量积的坐标表示及一些应用(1)对于平面内两个非零向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.(2)长度、夹角、垂直的坐标表示垂直的充要条件:a⊥b⇔a·b=0,即x1x2+y1y2=0.(注意与向量共线的坐标表示的区别)[2]2.类比平面向量数量积的坐标表示,思考对于空间两个非零向量,它们的数量积的坐标表示又是怎样的呢?二、数学建构对于单位正交基底{i,j,k},有i·i=j·j=k·k=1,i·j=i·k=j·k=0.设空间两个非零向量a=(x1,y

2、1,z1),b=(x2,y2,z2),请同学们根据向量数量积的运算律推导a·b的坐标表示.解 若{i,j,k}是空间的一个单位正交基底,则a=(x1,y1,z1)=x1i+y1j+z1k,b=(x2,y2,z2)=x2i+y2j+z2k,所以a·b=(x1i+y1j+z1k)·(x2i+y2j+z2k)=x1x2i2+y1y2j2+z1z2k2+x1y2i·j+x1z2i·k+y1x2j·i+y1z2j·k+z1x2k·i+z1y2k·j=x1x2+y1y2+z1z2.从而得两个空间向量数量积的坐标表示公式:a·b=x1x2+y1y2+z1z2.即两个

3、向量数量积等于它们对应坐标的乘积的和.三、数学运用※学习探究探究任务一:空间向量的数量积定义和性质问题:在几何中,夹角与长度是两个最基本的几何量,能否用向量的知识解决空间两条直线的夹角和空间线段的长度问题?新知:1)两个向量的夹角的定义:已知两非零向量,在空间一点,作,则叫做向量与的夹角,记作.试试:⑴范围:=0时,;=π时,⑵成立吗?⑶,则称与互相垂直,记作.2)向量的数量积:已知向量,则叫做的数量积,记作,即.规定:零向量与任意向量的数量积等于零.反思:⑴两个向量的数量积是数量还是向量?⑵(选0还是)⑶你能说出的几何意义吗?3)空间向量数量积的性质

4、:(1)设单位向量,则.(2).(3)=.4)空间向量数量积运算律:(1).(2)(交换律).(3)(分配律反思:⑴吗?举例说明.⑵若,则吗?举例说明.⑶若,则吗?为什么?※典型例题例1用向量方法证明:在平面上的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.变式1:用向量方法证明:已知:是平面内的两条相交直线,直线与平面的交点为,且.求证:.例2如图,在空间四边形中,,,,,,,求与的夹角的余弦值变式:如图,在正三棱柱ABC-ABC中,若AB=BB,则AB与CB所成的角为()A.60°B.90°C.105°D.75°例3如图,在

5、平行四边形ABCD-ABCD中,,,,==60°,求的长.※动手试试练1.已知向量满足,,,则____.练2.,则的夹角大小为_____.三、总结提升※学习小结1..向量的数量积的定义和几何意义.2.向量的数量积的性质和运算律的运用.※知识拓展向量给出了一种解决立体几何中证明垂直问题,求两条直线的夹角和线段长度的新方法.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.下列命题中:①若,则,中至少一个为②若且,则③④正确有个数为()A.0个B.1个C.2个D.3个2.已知和是

6、两个单位向量,夹角为,则下面向量中与垂直的是()A.B.C.D.3.已知中,所对的边为,且,,则=4.已知,,且和不共线,当与的夹角是锐角时,的取值范围是.5.已知向量满足,,,则____课后作业:1.已知空间四边形中,,,求证:.2.已知线段AB、BD在平面内,BD⊥AB,线段,如果AB=a,BD=b,AC=c,求C、D间的距离.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。