欢迎来到天天文库
浏览记录
ID:36152714
大小:563.50 KB
页数:4页
时间:2019-05-06
《1.3探索三角形全等的条件(4) (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、凤凰初中数学配套教学软件_教学设计数学教学设计教 材:义务教育教科书·数学(八年级上册)作者:王琳琳(丹阳市实验学校)1.3 探索三角形全等的条件(4)教学目标1.掌握三角形全等的条件“AAS”;2.会利用“AAS”进行有条理的思考和简单的推理;3.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学过程(教师)学生活动设计思路引入1.回忆上节课学习的内容,用自己的语言表达出来!2.解决下面的问题,你有
2、什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.1.积极回答问题,激活旧知识.2.利用“ASA”解决问题,对证明的过程思考并提出疑问.激活旧知识,猜想新知识,激发学生学习新知识的欲望.探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.积极思考,回答问题,对刚才的疑问用旧的知识加以推理和证明.将疑问化为问题,用已学过的知识来解决新问题,懂得问题的转化与初步推理.第4页共4页2021-8-31凤凰初中数学配套教学软件_教学设计得出基本事实
3、推论:两角及其中一角的对边分别相等的两个三角形全等.得出基本推论推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A¢B¢C¢中,∠B=∠B¢(已知),∠C=∠C¢(已知),AB=A¢B¢(已知),∴△ABC≌△A¢B¢C¢(AAS).总结前面问题中的感悟和所得,模仿上节所学“ASA”,一步步得出“ASA”的基本推论.通过学生的回答,培养学生的归纳能力,挖掘学生的思想深度并养成良好的语言表达能力.第4页共4页2021-8-31凤凰初中数学配套教学软件_教学设计巩固练
4、习1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?积极思考,回答问题.第1题口答,第2题学生上黑板板演过程.从观察图形找全等条件,到证明全等的填空,最后独立写出证明过程.学生的推理能力及几何语言表达能力得到了很大的发展和锻炼.拓展训练3.已知:如图,△ABC≌△A¢B¢C¢,AD和A¢D¢分别是△ABC和△A¢B¢C¢中BC和B¢C¢边
5、上的高.求证:AD=A¢D¢.积极思考,用旧知识解决新问题.通过对定理的选择应用,学生的逻辑推理能力得到提升.4.已知:如图,△ABC≌△A¢B¢C¢,AD和A¢D¢分别是△ABC和△A¢B¢C¢中∠A和∠A’的角平分线.求证:AD=A¢D¢.积极动脑,回答问题.对新知识加以练习巩固,学会选用适合的定理进行全等的证明.第4页共4页2021-8-31凤凰初中数学配套教学软件_教学设计5.已知:如图,△ABC≌△A¢B¢C¢,AD和A¢D¢分别是△ABC和△A¢B¢C¢的BC和B¢C¢边上的中线.求证:AD=A¢
6、D¢.学生独立完成之后,上讲台讲解.学生在学习完“SAS”“ASA”“AAS”之后面临的问题是如何根据题目选择正确的方法.拓展训练的三道题恰恰提供了这样的一个平台,让学生学会怎样选择,另外,对几何语言表达的要求也再次提高.小结这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?回忆上课内容,对下一节课充满期待和猜想.小结过去,展望未来,对数学始终保持一颗好奇心.第4页共4页2021-8-31
此文档下载收益归作者所有