欢迎来到天天文库
浏览记录
ID:327038
大小:427.69 KB
页数:17页
时间:2017-07-24
《极限的一个定理及其应用-外文翻译》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、石家庄经济学院本科毕业设计(论文)外文翻译本科生毕业设计(论文)外文翻译学生姓名:张朋宇学号:408114010113专业班级:数学与应用数学指导教师:梁海燕老师2014年02月10日17石家庄经济学院本科毕业设计(论文)外文翻译ADiscussiononaLimitTheoremandItsApplicationAbstract:Thispaperproposesthatalimittheoremcanhelptosolveaspecificlimitproblemofsumformulaandthatsomelimitofpr
2、oductformulacanalsobesolvedbyexploitingthefeatureoflogarithmfunction.Keywords:limittheorem;sumformula;productformulaIncalculus,wewillusuallysolveaspecificlimitproblemofsumformulaButthissumformulacan’tsumdirectly,anditcan’tchangeintosomekindsoffunction’sintegralsum.Soi
3、tishardtoworkoutitslimit,forsolvethisproblem.Thispaper’sproposesisthatalimittheoremcanhelptosolvethislimitproblemofsumformulaandthatsomelimitofproductformulacanalsobesolvedbylogarithmfunction.Theorem1Let(a)fbedifferentiableatx=0andf(0)=0,(b)gbeintegrableforx∈[a,b].Weh
4、aveProof Bythe(a),foreverythereisa>0suchthatimplies.Thenbythe(b),thereexistsarealnumberM>0suchthat
5、g(x)
6、≤Mforx∈17石家庄经济学院本科毕业设计(论文)外文翻译[a,b]andthereisa>0suchthat‖T‖7、hecasethatf(0)≠0.Wecanshowthat17石家庄经济学院本科毕业设计(论文)外文翻译forf(0)>0andLetf(x)=xthentheorem1hasbecomeThisisdefinitionofdefiniteintegral,andbylogarithmfunctionwegetCorollary2Iffbedifferentiableatx=0andf(0)=1andgbeintegrableforxinto[a,b]thenwehaveInpracticalisusuallydivide[0,8、1]intonparts,andchoose(k=1,2,…,n).Corollary3 Letfbedifferentiableatx=0andgbeintegrableforxinto[0,1],thenwehave(a)Iff(0)=0,wehave(b)(c)Iff(0)=1,wehave17石家庄经济学院本科毕业设计(论文)外文翻译Proof Bythattheorem1andlogarithmfunction,wegetExample1 Evaluateeachofthefollowing:Solution (a)Re9、writethesumintheequivalentform17石家庄经济学院本科毕业设计(论文)外文翻译Sothatbytheorem1,(b)RewritethesumintheequivalentformSothatbytheorem1,Sothatbytheorem1,17石家庄经济学院本科毕业设计(论文)外文翻译(d)Letf(x)=sinaxandg(x)=x.ThenSothatbytheorem1,Sothatbytheorem1,Example2 Evaluatethefollowinglimits:Soluti10、on(a)Wecanchangetheproductintoanequivalentfrombywriting17石家庄经济学院本科毕业设计(论文)外文翻译Letf(x)=1+xandg(x)=x.ThenSothatbycorollary2,(b
7、hecasethatf(0)≠0.Wecanshowthat17石家庄经济学院本科毕业设计(论文)外文翻译forf(0)>0andLetf(x)=xthentheorem1hasbecomeThisisdefinitionofdefiniteintegral,andbylogarithmfunctionwegetCorollary2Iffbedifferentiableatx=0andf(0)=1andgbeintegrableforxinto[a,b]thenwehaveInpracticalisusuallydivide[0,
8、1]intonparts,andchoose(k=1,2,…,n).Corollary3 Letfbedifferentiableatx=0andgbeintegrableforxinto[0,1],thenwehave(a)Iff(0)=0,wehave(b)(c)Iff(0)=1,wehave17石家庄经济学院本科毕业设计(论文)外文翻译Proof Bythattheorem1andlogarithmfunction,wegetExample1 Evaluateeachofthefollowing:Solution (a)Re
9、writethesumintheequivalentform17石家庄经济学院本科毕业设计(论文)外文翻译Sothatbytheorem1,(b)RewritethesumintheequivalentformSothatbytheorem1,Sothatbytheorem1,17石家庄经济学院本科毕业设计(论文)外文翻译(d)Letf(x)=sinaxandg(x)=x.ThenSothatbytheorem1,Sothatbytheorem1,Example2 Evaluatethefollowinglimits:Soluti
10、on(a)Wecanchangetheproductintoanequivalentfrombywriting17石家庄经济学院本科毕业设计(论文)外文翻译Letf(x)=1+xandg(x)=x.ThenSothatbycorollary2,(b
此文档下载收益归作者所有