欢迎来到天天文库
浏览记录
ID:28026057
大小:507.56 KB
页数:18页
时间:2018-12-07
《极限的一个定理及其应用-外文翻译》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、本科生毕业设计(论文)外文翻译学生姓名:张朋宇学号:408114010113专业班级:数学与应用数学指导教师:梁海燕老师2014年02月100ADiscussiononaLimitTheoremandItsApplicationAbstract:Thispaperproposesthatalimittheoremcanhelptosolveaspecificlimitproblemofsumformulaandthatsomelimitofproductformulacanalsobesolvedbyexploitingthef
2、eatureoflogarithmfunction.Keywords:limittheorem;sumformula;productformulaIncalculus,wewillusuallysolveaspecificlimitproblemofsumformulaZI5+1n+2:Butthissumformulacan’tsumdirectly,anditcan’tchangeintosomekindsoffunction’sintegralsum.Soitishardtoworkoutitslimit,forsolve
3、thisproblem.Thispaper’sproposesisthatalimittheoremcanhelptosolvethislimitproblemofsumformulaandthatsomelimitofproductformulacanalsobesolvedbylogarithmfunction.Theorem1Let(a)fbedifferentiableatx=0andf(0)=0,(b)gbeintegrableforfa,bl.Wehavenhg(^)^XkJ=f'(0)J^g(x)dx,whereT
4、:a=xIIrII=inax/^xx/ProofBythe(a),forevery£>0thereisa8^>0suchthatximplies
5、/(x)-fo)x6、g(x)7、forxE[a,b]andthereisa^2>0suchthatIITII<么implieshAv/-d.vLetS-min{8、-/7o>jg(x)dx^1-f'(Q)fgfCMx,+1/70>9、10、-jg(x)d.r11、^l/7o>12、+f[s(^)-/7o>M/7o>13、+gfQ•••fW为14、gfQ么/15、<^)II/7o>16、+^A/yz4X/=717、/7o>18、+M(b-a)]andthereforeMhlim^V//^g(^)^x,7=/70>J*gfx>dx.Wenotetheprecedingargumentwasbasedontheassumptionthatf(0)=0.Forthecasethatf(0)7^0.Wecanshowthatforf(19、0)>0and1户'g(^)]=-ooforf(0)<0.Letf(x)=xthentheorem1hasbecomeVgfO〜'=(x)dx.Thisisdefinitionofdefiniteintegral,andbylogarithmfunctionwegetCorollary2Iffbedifferentiableatx=0andf(0)=1andgbeintegrableforxinto[a,b]thenwehaveInpracticalisusuallydivide[0,1]intonparts,andchoose20、=—n(k=l,2,.",!!)•Corollary3Letfbedifferentiableatx=0andgbeintegrableforxinto[0,1],thenwehave(a)Iff(0)=0,wehave(b)(b)Iff(0)=1,wehaveProofBythattheorem1andlogarithmfunction,wegetlim^=limcxp21、^=exp(1”'[S(^)=cp[[f(x)/^-oJg(x)d.rCr>dexpfVo>Jg(x)d.riExamplelEvaluateeacho22、fthefollowing:Solution(a)Rewritethesumintheequivalentform2Lct/fx^^rand=x.Thenf'(Q)=0and丄2•Sothatbytheorem1,怕LT^+T2^…+7^nlim上n1+彳.tl
6、g(x)
7、forxE[a,b]andthereisa^2>0suchthatIITII<么implieshAv/-d.vLetS-min{8、-/7o>jg(x)dx^1-f'(Q)fgfCMx,+1/70>9、10、-jg(x)d.r11、^l/7o>12、+f[s(^)-/7o>M/7o>13、+gfQ•••fW为14、gfQ么/15、<^)II/7o>16、+^A/yz4X/=717、/7o>18、+M(b-a)]andthereforeMhlim^V//^g(^)^x,7=/70>J*gfx>dx.Wenotetheprecedingargumentwasbasedontheassumptionthatf(0)=0.Forthecasethatf(0)7^0.Wecanshowthatforf(19、0)>0and1户'g(^)]=-ooforf(0)<0.Letf(x)=xthentheorem1hasbecomeVgfO〜'=(x)dx.Thisisdefinitionofdefiniteintegral,andbylogarithmfunctionwegetCorollary2Iffbedifferentiableatx=0andf(0)=1andgbeintegrableforxinto[a,b]thenwehaveInpracticalisusuallydivide[0,1]intonparts,andchoose20、=—n(k=l,2,.",!!)•Corollary3Letfbedifferentiableatx=0andgbeintegrableforxinto[0,1],thenwehave(a)Iff(0)=0,wehave(b)(b)Iff(0)=1,wehaveProofBythattheorem1andlogarithmfunction,wegetlim^=limcxp21、^=exp(1”'[S(^)=cp[[f(x)/^-oJg(x)d.rCr>dexpfVo>Jg(x)d.riExamplelEvaluateeacho22、fthefollowing:Solution(a)Rewritethesumintheequivalentform2Lct/fx^^rand=x.Thenf'(Q)=0and丄2•Sothatbytheorem1,怕LT^+T2^…+7^nlim上n1+彳.tl
8、-/7o>jg(x)dx^1-f'(Q)fgfCMx,+1/70>
9、
10、-jg(x)d.r
11、^l/7o>
12、+f[s(^)-/7o>M/7o>
13、+gfQ•••fW为
14、gfQ么/
15、<^)II/7o>
16、+^A/yz4X/=7
17、/7o>
18、+M(b-a)]andthereforeMhlim^V//^g(^)^x,7=/70>J*gfx>dx.Wenotetheprecedingargumentwasbasedontheassumptionthatf(0)=0.Forthecasethatf(0)7^0.Wecanshowthatforf(
19、0)>0and1户'g(^)]=-ooforf(0)<0.Letf(x)=xthentheorem1hasbecomeVgfO〜'=(x)dx.Thisisdefinitionofdefiniteintegral,andbylogarithmfunctionwegetCorollary2Iffbedifferentiableatx=0andf(0)=1andgbeintegrableforxinto[a,b]thenwehaveInpracticalisusuallydivide[0,1]intonparts,andchoose
20、=—n(k=l,2,.",!!)•Corollary3Letfbedifferentiableatx=0andgbeintegrableforxinto[0,1],thenwehave(a)Iff(0)=0,wehave(b)(b)Iff(0)=1,wehaveProofBythattheorem1andlogarithmfunction,wegetlim^=limcxp
21、^=exp(1”'[S(^)=cp[[f(x)/^-oJg(x)d.rCr>dexpfVo>Jg(x)d.riExamplelEvaluateeacho
22、fthefollowing:Solution(a)Rewritethesumintheequivalentform2Lct/fx^^rand=x.Thenf'(Q)=0and丄2•Sothatbytheorem1,怕LT^+T2^…+7^nlim上n1+彳.tl
此文档下载收益归作者所有