资源描述:
《(全国通用版)2019版高考数学总复习 专题三 三角函数 3.3 三角恒等变换与解三角形精选刷题练 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3三角恒等变换与解三角形命题角度1利用正弦定理和余弦定理解三角形高考真题体验·对方向1.(2018全国Ⅰ·17)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.解(1)在△ABD中,由正弦定理得.由题设知,,所以sin∠ADB=.由题设知,∠ADB<90°,所以cos∠ADB=.(2)由题设及(1)知,cos∠BDC=sin∠ADB=.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×2=25.所以BC=5.2.
2、(2017全国Ⅰ·17)△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.解(1)由题设得acsinB=,即csinB=.由正弦定理得sinCsinB=.故sinBsinC=.(2)由题设及(1)得cosBcosC-sinBsinC=-,即cos(B+C)=-.所以B+C=,故A=.由题设得bcsinA=,即bc=8.由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=.故△ABC的周长为3+.3.(2017全国Ⅱ·17
3、)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.解(1)由题设及A+B+C=π,得sinB=8sin2,故sinB=4(1-cosB).上式两边平方,整理得17cos2B-32cosB+15=0,解得cosB=1(舍去),cosB=.(2)由cosB=得sinB=,故S△ABC=acsinB=ac.又S△ABC=2,则ac=.由余弦定理及a+c=6得b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB)=36-2×=4.所以b=
4、2.4.(2017全国Ⅲ·17)△ABC的内角A,B,C的对边分别为a,b,c.已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.解(1)由已知可得tanA=-,所以A=.在△ABC中,由余弦定理得28=4+c2-4ccos,即c2+2c-24=0.解得c=-6(舍去),c=4.(2)由题设可得∠CAD=,所以∠BAD=∠BAC-∠CAD=.故△ABD面积与△ACD面积的比值为=1.又△ABC的面积为×4×2sin∠BAC=2,所以△ABD的面积为.5.(2016全国Ⅰ·17)△
5、ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.解(1)由已知及正弦定理得,2cosC(sinAcosB+sinBcosA)=sinC,即2cosCsin(A+B)=sinC.故2sinCcosC=sinC.可得cosC=,所以C=.(2)由已知,absinC=.又C=,所以ab=6.由已知及余弦定理得,a2+b2-2abcosC=7.故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+.新题演练提能·刷高分1.(2018
6、山东淄博一模)在△ABC中,角A,B,C对边分别为a,b,c,已知2=a2-(b+c)2.(1)求角A的大小;(2)若a=6,b=2,求△ABC的面积.解(1)由已知2=a2-(b+c)2,得2bccosA=a2-(b+c)2,由余弦定理a2=b2+c2-2bccosA,得4bccosA=-2bc,所以cosA=-.又07、R的圆,a,b,c分别是A,B,C的对边,且2R(sin2B-sin2A)=(b-c)sinC,c=3.(1)求A;(2)若AD是BC边上的中线,AD=,求△ABC的面积.解(1)由正弦定理,得2R(sin2B-sin2A)=(b-c)sinC,可化为bsinB-asinA=bsinC-csinC,即b2-a2=bc-c2,cosA=,A=60°.(2)以AB,AC为邻边作▱ABEC,在△ABE中,∠ABE=120°,AE=.在△ABE中,由余弦定理得AE2=AB2+BE2-2AB·BEcos120°.即19=9+AC2-2×3×AC×-,解
8、得AC=2.故S△ABC=bcsinA=.3.(2018山东济南一模)在△ABC中,内角A,B,C所对的边分别为a,b,c,且bcosA-acosB=2c.(1)证