角平分线的性质教学案

角平分线的性质教学案

ID:29189326

大小:840.50 KB

页数:12页

时间:2018-12-17

角平分线的性质教学案_第1页
角平分线的性质教学案_第2页
角平分线的性质教学案_第3页
角平分线的性质教学案_第4页
角平分线的性质教学案_第5页
资源描述:

《角平分线的性质教学案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、范文范例学习参考第十一章角平分线的性质一学习目标1.了解角是轴对称图形和角平分线的定义,会用尺规作一个角的平分线;2.掌握角平分线的性质和判定;3.综合应用角的平分线的性质和判定解决相关问题。二重点、难点重点:角平分线的性质和判定。难点:角平分线的性质和判定的综合应用。三考点分析对角平分线的定义及角平分线的作法进行单独命题在中考中是比较少见的,但这两个知识点属于基础知识,出题者往往将其与线段的垂直平分线、等腰三角形、四边形等知识综合在一起进行命题,题型多为作图题,属中档难度题。角平分线的性质是本章的重要内容,它是除了用三角形全等证明线段相等之外的又一

2、个证明线段相等的重要方法。中考命题中,多将角平分线的作法及性质与其他知识点结合在一起进行考查,题型多为选择、填空、作图题,分值在3~6分。这就要求学生必须熟练掌握用尺规作图法作角平分线的要领,并会应用角平分线的定义、性质解决相关问题。四课时安排安排一小时五教学方法探究归纳法,实践法六教学过程1.知识梳理1)角平分线的定义2)角平分线的尺规作法3)角平分线的性质4)角平分线的判定2.新授知识点一作角平分线例1:如图,已知点为直线上一点,过作直线,使于。思路分析:由于AB是直线,要求作,实际上就是要作平角的平分线。根据角平分线的尺规作图法就可以作出直线C

3、M。解答过程:作法:1、以C为圆心,适当的长为半径画弧,与CA、CB分别交于点D、E;WORD格式整理范文范例学习参考2、分别以D、E为圆心,大于的长为半径画弧,使两弧交于点M;3、作直线CM。所以,直线CM即为所求。解题后的思考:此题要求“大于的长为半径”的理由是:半径如果小于,则两弧无法相交;而半径如果等于,则两弧交点位于C点处,无法作出直线CM。在数学学习中,不光要知道怎么做题,还要知道为什么要这样做。小结:本题属于作图题。在解决作图题时要求做到规范地使用尺规,规范地使用作图语言,规范地按照步骤作出图形,并且作图的痕迹要保留,不能擦掉。知识点二

4、角平分线的性质角平分线上的点到角的两边的距离相等。角平分线性质的符号语言:在的平分线上于,于例2:如图,是的角平分线,,,垂足分别是。连接,交于点。说出与之间有什么关系?证明你的结论。思路分析:WORD格式整理范文范例学习参考两条线段之间的关系有长度和位置两种关系,因此我们可以从这两方面去猜测判断。角是以其平分线为对称轴的轴对称图形,此题可以利用这一点进行判断。解答过程:,且证明:平分,,垂足分别是在和中(HL)在△DGE和△DGF中(SAS),,且。解题后的思考:通过此题我们知道,证明两条线段相等,除了利用全等三角形的性质外,还可以利用角平分线的性

5、质。这样我们又多了一种证明线段相等的办法。在利用角平分线的性质时,“角平分线”和“两个垂直”这两个条件缺一不可。例3:如图,是的外角的平分线上一点,于,于,且交的延长线于。求证:。WORD格式整理范文范例学习参考思路分析:由已知条件,可以利用角平分线的性质得到DE=DF。而要证明CE=CF,只要证明以它们为边的两个三角形全等即可。将两者结合起来分析就不难找到思路。解答过程:CD是的平分线,于,于,在和中(HL)解题后的思考:利用角平分线的性质可以证明线段相等,而线段相等可能又是证明其他结论所需要的条件。小结:运用角平分线的性质时应注意以下三个问题:(

6、1)这里的距离指的是点到角的两边的垂线段的长;(2)该性质可以独立作为证明两条线段相等的依据,不需要再用全等三角形的性质;(3)使用该结论的前提条件是图中有角平分线、有两个垂直。知识点三角平分线的判定到角的两边距离相等的点在角的平分线上。角平分线判定的符号语言:于,于且在的平分线上(或写成是的平分线)例4:如图,,于,于,和交于点。求证:平分。WORD格式整理范文范例学习参考思路分析:要证平分,已知条件中已经有两个垂直,即已经有点到角的两边的距离了,只要证明这两个距离相等即可。而要证明两条线段相等,可利用全等三角形的性质来证明。解答过程:于,于在和中

7、(AAS)又于,于平分。解题后的思考:判定角的平分线时若题目中只给出一个条件或,,那么得出平分这一结论是错误的。例5:如图,是上两点,是上两点,且,,试问点是否在的平分线上?思路分析:一方面,要判断点是否在的平分线上,只要判断点P到角的两边距离是否相等即可;另一方面,由已知条件中三角形面积和底边相等可以推导出高相等。这样已知和结论就联系起来了。解答过程:证明:过点P作于D,于E,,而WORD格式整理范文范例学习参考又又于D,于E在的平分线上。解题后的思考:利用面积证明相关结论是一种常见方法。面积法有着其他方法所不具有的优势,比如它不要求考虑线段的位置

8、关系。小结:角平分线的判定与角平分线的性质是互逆的。判定角的平分线要满足两个条件:“垂直”和“相等”。若已知

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。