欢迎来到天天文库
浏览记录
ID:25017492
大小:60.50 KB
页数:6页
时间:2018-11-17
《圆锥曲线与方程导学案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、圆锥曲线与方程导学案!§2.2.1椭圆及其标准方程(1)学习目标1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义;3.掌握椭圆的标准方程.学习过程一、课前准备(预习教材理P61~P63,文P32~P34找出疑惑之处)复习1:过两点,的直线方程 . 复习2:方程表示以 为圆心, 为半径的 .二、新课导学※学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何
2、条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1:我们把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.反思:若将常数记为,为什么?当时,其轨迹为 ;当时,其轨迹为 .试试: 已知,,到,两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数.新知2:焦点在轴上的椭圆的标准方程 其中若焦点在轴上,两个焦点坐标 ,则椭圆的标准方程是 .※典型例题例1写出适合下
3、列条件的椭圆的标准方程:⑴,焦点在轴上;⑵,焦点在轴上;⑶.变式:方程表示焦点在轴上的椭圆,则实数的范围 .小结:椭圆标准方程中:;.例2 已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.变式:椭圆过点,,,求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程.※动手试试练1.已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是().A. B.6 C. D.12练2.方程表示焦点在轴上的椭圆,求实数的范围.三、总结提升※学习小结1.椭圆的定义:2.椭圆的标准方程:※知识拓展1997年初,中国科学院紫金山天文台发布
4、了一条消息,从1997年2月中旬起,海尔•波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔•波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※自我评价你完成本节导学案的情况为( ).A.很好 B.较好 C.一般 D.较差※当堂检测(时量:5分钟满分:10分)计分:1.平面内一动点到两定点、距离之和为常数,则点的轨迹为( ).A
5、.椭圆 B.圆C.无轨迹 D.椭圆或线段或无轨迹2.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是( ).A. B.C. D.3.如果椭圆上一点到焦点的距离等于6,那么点到另一个焦点的距离是().A.4 B.14 C.12 D.84.椭圆两焦点间的距离为,且椭圆上某一点到两焦点的距离分别等于和,则椭圆的标准方程是 .5.如果点在运动过程中,总满足关系式,点的轨迹是 ,它的方程是 .课后作业1.写出适合下列条件的椭圆的标准方程:⑴焦点在轴上,焦距等于,并且经过点;⑵焦点坐标分别为,;⑶.2.椭圆的焦距为
6、,求的值.§2.2.1椭圆及其标准方程(2)学习目标1.掌握点的轨迹的求法;2.进一步掌握椭圆的定义及标准方程.学习过程一、课前准备复习1:椭圆上一点到椭圆的左焦点的距离为,则到椭圆右焦点的距离是 .复习2:在椭圆的标准方程中,,,则椭圆的标准方程是 二、新课导学※学习探究问题:圆的圆心和半径分别是什么?问题:圆上的所有点到 (圆心)的距离都等于 (半径);反之,到点的距离等于的所有点都在圆 上.※典型例题例1在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的
此文档下载收益归作者所有