欢迎来到天天文库
浏览记录
ID:52637621
大小:235.16 KB
页数:17页
时间:2020-02-01
《实验与探究巧拼正方形.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章特殊平行四边形第3节正方形的性质与判定(二)b白鹤滩中学:朱安府zx将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?第一环节情景引入正方形的判定定理:1.对角线相等的菱形是正方形。2.对角线垂直的矩形是正方形。3.有一个角是直角的菱形是正方形。第一环节情景引入第一环节情景引入第二环节运用巩固第三环节猜想结论,分组验证1.如图,在ΔABC中,EF为ΔABC的中位线,①若∠BEF=30°,则∠A=.②若EF=8cm,则AC=.BFECA第三环节猜想结论,分组验证2.在AC的下方找一点D,
2、做CD和AD的中点G、H,问EF和GH有怎样的关系?EH和FG呢?DHGBFECA3.四边形EFGH的形状有什么特征?如果四边形ABCD变为特殊的四边形,中点四边形EFGH会有怎样的变化呢?平行四边形矩形菱形正方形等腰梯形直角梯形梯形原四边形可以是:第三环节猜想结论,分组验证特殊四边形的中点四边形:平行四边形的中点四边形是平行四边形菱形的中点四边形是矩形矩形的中点四边形是菱形正方形的中点四边形是正方形第三环节猜想结论,分组验证特殊四边形的中点四边形:等腰梯形的中点四边形是菱形直角梯形的中点四边形是平行四边形梯形的
3、中点四边形是平行四边形第三环节猜想结论,分组验证归纳:特殊四边形的中点四边形:◆平行四边形的中点四边形是平行四边形◆矩形的中点四边形是菱形◆菱形的中点四边形是矩形◆正方形的中点四边形是正方形◆等腰梯形的中点四边形是菱形◆直角梯形的中点四边形是平行四边形◆梯形的中点四边形是平行四边形第三环节猜想结论,分组验证问题:1.矩形和等腰梯形是形状不同的四边形,为什么中点四边形都由平行四边形变化为菱形?2.平行四边形变化为菱形需要增加什么条件?3.你是从什么角度考虑的?4.你从哪儿得到的启发?5.你能用你的发现解释其它的图形
4、变化吗?例如:原四边形为菱形,其中点四边形为矩形?第三环节猜想结论,分组验证对角线垂直的四边形的中点四边形是矩形对角线相等的四边形的中点四边形是菱形对角线既相等又垂直的四边形的中点四边形是正方形对角线既不相等又不垂直的四边形的中点四边形是平行四边形第三环节猜想结论,分组验证归纳:一般四边形的中点四边形:决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对角线的长度和位置关系原四边形对角线关系不相等、不垂直相等垂直相等且垂直所得中点四边形形状平行四边形菱形矩形正方形第三环节猜想结论,分组验证第四环节学以致用
5、ABCDEFGHABCDEFGHABCDEFGHABCDEFGHABCD是凸四边形AB、AD在同一线段上ABCD是凹四边形ABCD是扭曲四边形拖动A点使四边形ABCD的图形如上图变化,那么中点四边形EFGH会有怎样的变化呢?结论:当ABCD是上面的图形时,四边形EFGH仍为平行四边形图形发散练习第五环节课堂小结1.本节课重点学习了什么知识,应用了哪些数学思想和方法?2.通过本节课的学习你有哪些收获?在今后的学习过程中应该怎么做?第六环节布置作业必做:1.习题1.8(1、3)2.用所学中点四边形的知识,设计一个基本
6、图形,然后在方格纸内通过平移、旋转或轴对称进行图案设计。选做:习题1.8(5)
此文档下载收益归作者所有