欢迎来到天天文库
浏览记录
ID:51408127
大小:1.29 MB
页数:21页
时间:2020-03-23
《2018-2019学年山东省聊城市高一下学期期末数学试题(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018-2019学年山东省聊城市高一下学期期末数学试题一、单选题1.某赛季中,甲、乙两名篮球队员各场比赛的得分茎叶图如图所示,若甲得分的众数为15,乙得分的中位数为13,则()A.15B.16C.17D.18【答案】A【解析】由图可得出,然后可算出答案【详解】因为甲得分的众数为15,所以由茎叶图可知乙得分数据有7个,乙得分的中位数为13,所以所以故选:A【点睛】本题考查的是茎叶图的知识,较简单2.下列说法错误的是()A.若样本的平均数为5,标准差为1,则样本的平均数为11,标准差为2B.身高和体重具有相关关系C
2、.现有高一学生30名,高二学生40名,高三学生30名,若按分层抽样从中抽取20名学生,则抽取高三学生6名D.两个变量间的线性相关性越强,则相关系数的值越大【答案】D第21页共21页【解析】利用平均数和方差的定义,根据线性回归的有关知识和分层抽样原理,即可判断出答案.【详解】对于A:若样本的平均数为5,标准差为1,则样本的平均数2×5+1=11,标准差为2×1=2,故正确对于B:身高和体重具有相关关系,故正确对于C:高三学生占总人数的比例为:所以抽取20名学生中高三学生有名,故正确对于D:两个变量间的线性相关性越强
3、,应是相关系数的绝对值越大,故错误故选:D【点睛】本题考查了线性回归的有关知识,以及平均数和方差、分层抽样原理的应用问题,是基础题.3.已知角的终边上一点,且,则()A.B.C.D.【答案】B【解析】由角的终边上一点得,根据条件解出即可【详解】由角的终边上一点得所以解得故选:B【点睛】本题考查的是三角函数的定义,较简单.4.若,,则与向量同向的单位向量是()第21页共21页A.B.C.D.【答案】A【解析】先求出的坐标,然后即可算出【详解】因为,所以所以与向量同向的单位向量是故选:A【点睛】本题考查的是向量的坐标
4、运算,属于基础题5.书架上有2本数学书和2本语文书,从这4本书中任取2本,那么互斥但不对立的两个事件是()A.“至少有1本数学书”和“都是语文书”B.“至少有1本数学书”和“至多有1本语文书”C.“恰有1本数学书”和“恰有2本数学书”D.“至多有1本数学书”和“都是语文书”【答案】C【解析】两个事件互斥但不对立指的是这两个事件不能同时发生,也可以都不发生,逐一判断即可【详解】对于A:“至少有1本数学书”和“都是语文书”是对立事件,故不满足题意对于B:“至少有1本数学书”和“至多有1本语文书”可以同时发生,故不满足
5、题意对于C:“恰有1本数学书”和“恰有2本数学书”互斥但不对立,满足题意对于D:“至多有1本数学书”和“都是语文书”可以同时发生,故不满足题意故选:C【点睛】本题考查互斥而不对立的两个事件的判断,考查互斥事件、对立事件的定义等基础知识,是基础题.第21页共21页6.函数的单调递增区间是()A.B.C.D.【答案】A【解析】先求出所有的单调递增区间,然后与取交集即可.【详解】因为令得:所以的单调递增区间是因为,所以即函数的单调递增区间是故选:A【点睛】求形如的单调区间时,一般利用复合函数的单调性原理“同增异减”来求
6、出此函数的单调区间,当时,需要用诱导公式将函数转化为.7.中国古代的“礼”“乐”“射”“御”“书”“数”合称“六艺”.某校国学社团准备于周六上午9点分别在6个教室开展这六门课程讲座,每位同学只能选择一门课程,则甲乙两人至少有人选择“礼”的概率是()A.B.C.D.【答案】D【解析】甲乙两人至少有人选择“礼”的对立事件是甲乙两人都不选择“礼”,求出后者的概率即可第21页共21页【详解】由题意,甲和乙不选择“礼”的概率是,且相互独立所以甲乙两人都不选择“礼”的概率是所以甲乙两人至少有人选择“礼”的概率是故选:D【点睛
7、】当遇到“至多”“至少”型题目时,一般用间接法求会比较简单,即先求出此事件的对立事件的概率,然后即可得出原事件的概率.8.已知实数,,,则()A.B.C.D.【答案】C【解析】先得出,,,然后利用在上的单调性即可比较出的大小.【详解】因为所以,,因为且在上单调递增所以故选:C【点睛】利用函数单调性比较函数值大小的时候,应将自变量转化到同一个单调区间内.9.已知,,,,则()第21页共21页A.B.C.或D.或【答案】B【解析】先根据角的范围及平方关系求出和,然后可算出,进而可求出【详解】因为,,,所以,,所以,所
8、以因为,所以故选:B【点睛】在由三角函数的值求角时,应根据角的范围选择合适的三角函数,以免产生多的解.10.在中,,则是()A.等腰直角三角形B.等腰或直角三角形C.等腰三角形D.直角三角形【答案】D【解析】先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以第21页共21页因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D
此文档下载收益归作者所有