2019_2020学年高中数学课时分层作业5函数的单调性与导数(含解析)新人教A版

2019_2020学年高中数学课时分层作业5函数的单调性与导数(含解析)新人教A版

ID:44806183

大小:83.60 KB

页数:6页

时间:2019-10-29

2019_2020学年高中数学课时分层作业5函数的单调性与导数(含解析)新人教A版_第1页
2019_2020学年高中数学课时分层作业5函数的单调性与导数(含解析)新人教A版_第2页
2019_2020学年高中数学课时分层作业5函数的单调性与导数(含解析)新人教A版_第3页
2019_2020学年高中数学课时分层作业5函数的单调性与导数(含解析)新人教A版_第4页
2019_2020学年高中数学课时分层作业5函数的单调性与导数(含解析)新人教A版_第5页
资源描述:

《2019_2020学年高中数学课时分层作业5函数的单调性与导数(含解析)新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时分层作业(五) 函数的单调性与导数(建议用时:60分钟)[基础达标练]一、选择题1.如图是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是(  )A.在区间(-2,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.在区间(3,5)上f(x)是增函数C [由导函数f′(x)的图象知在区间(4,5)上,f′(x)>0,所以函数f(x)在(4,5)上单调递增.故选C.]2.函数y=x+xlnx的单调递减区间是(  )A.(-∞,e-2)  B.(0,e-2)C.(e-2,+∞)D.(e2,+∞)B [因为y=x+xln

2、x,所以定义域为(0,+∞).令y′=2+lnx<0,解得0

3、)上既有增又有减,故排除A;对于函数y=xe2,因e2为大于零的常数,不用求导就知y=xe2在(0,+∞)内为增函数;对于C,y′=3x2-1=3,故函数在,上为增函数,在上为减函数;对于D,y′=-1(x>0).故函数在(1,+∞)上为减函数,在(0,1)上为增函数,故选B.]5.设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一直角坐标系中,不可能正确的是(  )A     B     C     DD [对于选项A,若曲线C1为y=f(x)的图象,曲线C2为y=f′(x)的图象,则函数y=f(x)在(-∞,0)内是减函数,从而在(-∞,0)内有

4、f′(x)<0;y=f(x)在(0,+∞)内是增函数,从而在(0,+∞)内有f′(x)>0.因此,选项A可能正确.同理,选项B、C也可能正确.对于选项D,若曲线C1为y=f′(x)的图象,则y=f(x)在(-∞,+∞)内应为增函数,与C2不相符;若曲线C2为y=f′(x)的图象,则y=f(x)在(-∞,+∞)内应为减函数,与C1不相符.因此,选项D不可能正确.]二、填空题6.函数f(x)=x-2sinx在(0,π)上的单调递增区间为__________. [令f′(x)=1-2cosx>0,则cosx<,又x∈(0,π),解得

5、=2x3-9x2+12x+1的单调减区间是________.(1,2) [f′(x)=6x2-18x+12,令f′(x)<0,即6x2-18x+12<0,解得1<x<2.]8.已知函数f(x)=在(-2,+∞)内单调递减,则实数a的取值范围为________. [f′(x)=,由题意得f′(x)≤0在(-2,+∞)内恒成立,∴解不等式得a≤,但当a=时,f′(x)=0恒成立,不合题意,应舍去,所以a的取值范围是.]三、解答题9.已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.(1)若a=1,求曲线f(x)在点(1,f(1))处的切线方程.(2)若a=-1

6、,求f(x)的单调区间.[解] f′(x)=(ax+2a+1)xex.(1)若a=1,则f′(x)=(x+3)xex,f(x)=(x2+x-1)ex,所以f′(1)=4e,f(1)=e.所以曲线f(x)在点(1,f(1))处的切线方程为y-e=4e(x-1),即4ex-y-3e=0.(2)若a=-1,则f′(x)=-(x+1)xex.令f′(x)=0解x1=-1,x2=0.当x∈(-∞,-1)时,f′(x)<0;当x∈(-1,0)时,f′(x)>0;当x∈(0,+∞)时,f′(x)<0;所以f(x)的增区间为(-1,0),减区间为(-∞,-1)和(0,+∞).10.已知二次函数h

7、(x)=ax2+bx+2,其导函数y=h′(x)的图象如图所示,f(x)=6lnx+h(x).(1)求函数f(x)的解析式;(2)若函数f(x)在区间(1,m+)上是单调函数,求实数m的取值范围.[解] (1)由已知,h′(x)=2ax+b,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h′(x)=2ax+b,∴解得∴h(x)=x2-8x+2,h′(x)=2x-8,∴f(x)=6lnx+x2-8x+2.(2)∵f′(x)=+2x-8=(x>0).∴当x变化时,f′

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。