欢迎来到天天文库
浏览记录
ID:39640302
大小:163.00 KB
页数:4页
时间:2019-07-08
《山东科技大学矩阵理论2013级期末试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、适用专业(层次):工程硕士山东科技大学《矩阵理论》试题班级姓名学号题号一二三总得分评卷人审核人得分一、选择题(本大题共5个小题,每小题3分,总计15分)1.给定向量,那么,的1范数为()。A.1B. C.D.2.矩阵从属于向量范数的算子范数为()。A.B.C.D.3.矩阵相对于矩阵算子范数的条件数为()。A.3B.2C.D.14.设单纯矩阵的谱分解为,则的谱分解为()。A. B. C. D.5.设矩阵的特征值为,那么,其特征值估计为()。A.B.C.D.二、填空题(本大题共5小题,每小题3分,总计15分)1.
2、向量的2范数。42.设为Hermite矩阵,则。3.设,那么,在复平面上的第个Gerschgorin圆______________。4.设为矩阵的自反广义逆矩阵,则 。5.给定矩阵,那么矩阵的M-P广义逆矩阵 。三、计算题(本大题共7个小题,每小题10分,总计70分)1.求点到方程组所给出的线性流形的距离。2.设,且。利用向量的范数证明:。3.求矩阵的最大秩分解。44.估计矩阵的特征值的分布范围,并画出一个行盖尔圆和一个列盖尔圆。5.设,求。6.设,求出矩阵的一个广义逆矩阵,47.设,求的M-
3、P广义逆矩阵4
此文档下载收益归作者所有