导数中全全参数地取值范围问地题目

导数中全全参数地取值范围问地题目

ID:36731755

大小:288.01 KB

页数:14页

时间:2019-05-14

导数中全全参数地取值范围问地题目_第1页
导数中全全参数地取值范围问地题目_第2页
导数中全全参数地取值范围问地题目_第3页
导数中全全参数地取值范围问地题目_第4页
导数中全全参数地取值范围问地题目_第5页
资源描述:

《导数中全全参数地取值范围问地题目》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实用标准题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立;经验1:此类问题提倡按以下三个步骤进行解决:第一步:令得到几个根;第二步:列表如下;第三步:由表可知;经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:第一种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值;第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值;题型特征(恒成立恒成立);单参数放到不等式上设函数(,且)(1)求函数的单调区间;(2)求的取值范围;(3)已知对任意恒成立,求实数m的取值范围。2.已

2、知函数在点处的切线方程为文案大全实用标准(1)求的值;(2)如果当,且时,,求的取值范围.3.已知函数在出取得极值,其中为常数.(1)试确定的值;(2)讨论函数的单调区间;(3)若对任意,不等式恒成立,求的取值范围。文案大全实用标准4.已知函数,,其中(1)对任意的,都有恒成立,求实数的取值范围;(2)对任意的,恒成立,求实数的取值范围5.已知函数,,其中.若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围6.设函数.若对所有都有,求的取值范围.文案大全实用标准7,设函数,当时,,求的取值范围.8设函数在及时取得极值.(1)求、的值;(2)若对于

3、任意的,都有成立,求的取值范围9(15北京理科)已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求证:当时,;(Ⅲ)设实数使得对恒成立,求的最大值.文案大全实用标准10(15年福建理科)已知函数,(Ⅰ)证明:当;(Ⅱ)证明:当时,存在,使得对(Ⅲ)确定k的所以可能取值,使得存在,对任意的恒有11、(2016年四川高考)设函数f(x)=ax2-a-lnx,其中a∈R.(I)讨论f(x)的单调性;(II)确定a的所有可能取值,使得f(x)>在区间(1,+∞)内恒成立文案大全实用标准(e=2.718…为自然对数的底数)。单参数放到区间上1.已知在区间上是增函数,

4、在区间,上是减函数,有(1)求的解析式;文案大全实用标准(1)若区间上恒有成立,求的取值范围2.已知三次函数图象上点处的切线经过点,并且在有极值(1)求的解析式;(2)当时,恒成立,求实数的取值范围3.已知函数在处取得极值,曲线过原点和点P,若曲线在点P处的切线与直线的夹角为且切线的倾斜角为钝角(1)求的表达式;(2)若在区间上递增,求的取值范围(3)若求证文案大全实用标准4.已知函数,若函数在上为增函数,求正实数的取值范围5.(15年新课标2理科)设函数。(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m的取值范围。6.(15年新课标2文

5、科)已知.(I)讨论的单调性;(II)当有最大值,且最大值大于时,求a的取值范围文案大全实用标准7、(2016年四川高考)设函数f(x)=ax2-a-lnx,其中a∈R.(I)讨论f(x)的单调性;(II)确定a的所有可能取值,使得f(x)>在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。双参数知道一个参数的范围1.已知函数,其中(1)讨论的单调性(2)若对任意,不等式在恒成立,求的取值范围文案大全实用标准2.已知函数,(1)若是函数的一个极值点,求(2)讨论的单调性(3)若对任意的,不等式在上恒成立,求的取值范围文案大全实用标准3设函数

6、(1)若函数在处于直线相切,求实数的值,求在上的最大值;(2)当时,若不等式对所有的,都成立,求的取值范围4.设函数,,若对于任意的,不等式在上恒成立,求实数的取值范围5.设函数,其中,.若对于任意的,不等式在上恒成立,求的取值范围文案大全实用标准双参数中范围均未知型1.已知函数,对任意的,恒有(1)证明:当时,(2)若对满足题设条件的任意,,不等式恒成立,求M的最小值文案大全实用标准2若图形上的斜率是3的两切线间的距离为,设(1)若函数在处有极值,求的解析式;(2)若函数在区间上为增函数,且在区间上都成立,求的取值范围3、(2016江苏)已知函数.文案

7、大全实用标准(1)设a=2,b=.①求方程=2的根;②若对任意,不等式恒成立,求实数m的最大值;(2)若,函数有且只有1个零点,求ab的值.文案大全

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。