欢迎来到天天文库
浏览记录
ID:34544603
大小:137.51 KB
页数:11页
时间:2019-03-07
《导数中求全参数地取值范围》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、标准实用文案导数中求参数的取值范围求参数取值范围的方法1.分离参数,恒成立转化为最值问题2.分离参数,结合零点和单调性解不等式3.将参数分成若干个区间讨论是否满足题意1已知函数(,为自然对数的底数).(Ⅰ)讨论函数的单调性;(Ⅱ)若,函数在上为增函数,求实数的取值范围.解:(Ⅰ)函数的定义域为,.当时,,∴在上为增函数;当时,由得,当时,,∴函数在上为减函数,当时,,∴函数在上为增函数……4分(Ⅱ)当时,,∵在上为增函数;∴在上恒成立,即在上恒成立,…………………………6分令,,则,令,在上恒成立,文档标准实用文案即在上为增函数,即,∴,即在上为
2、增函数,∴,∴,所以实数的取值范围是.………………12分2.(2016·全国甲卷)已知函数f(x)=(x+1)lnx-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)lnx-4(x-1),f(1)=0,f′(x)=lnx+-3,f′(1)=-2.故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于lnx->0.设g(x)
3、=lnx-,则g′(x)=-=,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;②当a>2时,令g′(x)=0得x1=a-1-,x2=a-1+.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<0.文档标准实用文案综上,a的取值范围是(-∞,2].3.(2016·全国乙卷)已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.(1)求a的取值范围;(2)设
4、x1,x2是f(x)的两个零点,证明:x1+x2<2.解:(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).①设a=0,则f(x)=(x-2)ex,f(x)只有一个零点.②设a>0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,所以f(x)在(-∞,1)内单调递减,在(1,+∞)内单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b(b-2)+a(b-1)2=a>0,故f(x)存在两个零点.③设a<0,由f′(x)=0得x=1或x=ln(-2a).若a≥-,则l
5、n(-2a)≤1,故当x∈(1,+∞)时,f′(x)>0,因此f(x)在(1,+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.若a<-,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f′(x)<0;当x∈(ln(-2a),+∞)时,f′(x)>0.因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.文档标准实用文案综上,a的取值范围为(0,+∞).(2)证明:不妨设x16、∞),2-x2∈(-∞,1),又f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)ex2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)ex2.设g(x)=-xe2-x-(x-2)ex,则g′(x)=(x-1)(e2-x-ex).所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.4.已知函数f(x)=ax7、-1-lnx(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x=1处取得极值,∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.解:(1)由已知得f′(x)=a-=(x>0).当a≤0时,f′(x)≤0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递减,∴f(x)在(0,+∞)上没有极值点.当a>0时,由f′(x)<0,得0<x<,文档标准实用文案由f′(x)>0,得x>,∴f(x)在上单调递减,在上单调递增,即f(x)在x=处有极小值.∴当a≤0时,f(x)在(0,+∞)上没有极值点,8、当a>0时,f(x)在(0,+∞)上有一个极值点.(2)∵函数f(x)在x=1处取得极值,∴f′(1)=0,解得a=1,∴f(x)≥bx
6、∞),2-x2∈(-∞,1),又f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)ex2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)ex2.设g(x)=-xe2-x-(x-2)ex,则g′(x)=(x-1)(e2-x-ex).所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.4.已知函数f(x)=ax
7、-1-lnx(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x=1处取得极值,∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.解:(1)由已知得f′(x)=a-=(x>0).当a≤0时,f′(x)≤0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递减,∴f(x)在(0,+∞)上没有极值点.当a>0时,由f′(x)<0,得0<x<,文档标准实用文案由f′(x)>0,得x>,∴f(x)在上单调递减,在上单调递增,即f(x)在x=处有极小值.∴当a≤0时,f(x)在(0,+∞)上没有极值点,
8、当a>0时,f(x)在(0,+∞)上有一个极值点.(2)∵函数f(x)在x=1处取得极值,∴f′(1)=0,解得a=1,∴f(x)≥bx
此文档下载收益归作者所有