导数及其应用单元复习与巩固(1)

导数及其应用单元复习与巩固(1)

ID:29721820

大小:260.00 KB

页数:8页

时间:2018-12-22

导数及其应用单元复习与巩固(1)_第1页
导数及其应用单元复习与巩固(1)_第2页
导数及其应用单元复习与巩固(1)_第3页
导数及其应用单元复习与巩固(1)_第4页
导数及其应用单元复习与巩固(1)_第5页
资源描述:

《导数及其应用单元复习与巩固(1)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、导数及其应用单元复习与巩固知识网络            目标认知考试大纲要求:  1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线的切线的斜率等);掌握函数在一   点处的导数的定义和导数的几何意义;理解导数的概念.  2.熟记基本导数公式;掌握两个函数四则运算的求导法则;  3.掌握复合函数的求导法则,会求某些简单函数的导数.  4.能利用导数研究函数的单调性,会用导数求函数的单调区间,极大值、极小值,及求闭区间上函数   的最大值、最小值.对多项式函数一般不超过三次.   5.了解“以直代曲”、“以不变代变”的思想

2、方法,了解定积分的概念和几何意义.直观了解微积分   基本定理的含义,并能用定理计算简单的定积分.  6.应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题.重点:  导数的概念及几何意义;用导数求函数的单调区间,极大值、极小值,及求闭区间上函数的最大值、最小值;正确计算定积分,利用定积分求面积.难点:  复合函数的导数;利用导数判断函数单调性时有关字母讨论的问题;有关函数最值的实际应用问题的学习;将实际问题化归为定积分问题.学习策略:  导数是在函数极限的基础上发展起来的研究变量的一门科学,它为有效地解决一些传统的初

3、等函数问题提供了一般的方法,如求曲线的切线方程,函数的单调区间、极值与最值以及有关的实际问题等,在具体问题中,应根据问题的具体条件适当选用方法。知识要点梳理知识点一:导数的相关概念1.导数的定义:  对函数,在点处给自变量x以增量Δx,函数y相应有增量.若极限存在,则此极限称为在点x0处的导数,记作或,此时也称在点x0处可导.  即:(或)  注意:增量△x可以是正数,也可以是负数.2.导函数:  如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数,称这个函数为函数在开区间内的导函数,

4、简称导数,  注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在附近的变化情况.3.导数的几何意义:  过曲线y=f(x)上任意一点(x,y)的切线的斜率就是f(x)在x处的导数,即.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是,切线方程为.知识点二:导数的运算1.常见基本函数的导数公式  (1)(C为常数),  (2)(n为有理数),  (3),  (4),  (5),  (6),  (7),  (8),2.函数四则运算求导法则  设,均可导  (1)和差的导数:  (2)积

5、的导数:  (3)商的导数:()3.复合函数的求导法则  一般地,复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即或知识点三:导数的应用1、确定函数的单调区间  设函数y=f(x)在某个区间内可导,则  当时,y=f(x)在相应区间上为增函数;  当时,y=f(x)在相应区间上为减函数;  当恒有时,y=f(x)在相应区间上为常数函数.  注意:在区间(a,b)内,是f(x)在(a,b)内单调递增的充分不必要条件!2、函数的极值  一般地,设函数y=f(x)在x=x0及其附近有定义,  (1)如果

6、对于x0附近的所有点,都有:f(x)f(x0),称f(x0)为函数f(x)的—个极小值,记作   y极小值=f(x0).  注意:极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.3、函数的最值  函数的最值表示函数在定义域内值的整体情况.连续函数f(x)在闭区间[a,b]上必有一个最大值和一个最小值,但是最值点可以不唯一;但在开区间(a,b)内连续的

7、函数不一定有最大值和最小值.  注意:最值与极值的区别与联系:  ①函数最大值和最小值是比较整个定义域上的函数值得出的,是整个定义区间上的一个概念,而函数   的极值则是比较极值点附近两侧的函数值而得出的,是局部的概念;  ②极值可以有多个,最大(小)值若存在只有一个;  ③极值只能在区间内取得,不能在区间端点取得;而使函数取得最大值、最小值的点可能在区间的内   部,也可能在区间的端点.  ④有极值的函数不一定有最值,有最值的函数未必有极值,极值可能成为最值.知识点四:定积分1.定积分的概念  如果函数在区间上连续,用分点将区间分

8、为n个小区间,在每个小区间上任取一点(i=1,2,3…,n),作和式,当时,上述和式无限趋近于某个常数,这个常数叫做在区间上的定积分.记作.即=,这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。