欢迎来到天天文库
浏览记录
ID:8725007
大小:299.50 KB
页数:9页
时间:2018-04-06
《人教版九年级数学上《第23章旋转》单元测试卷(b)含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第23章旋转单元测试B卷时间:100分钟分数:120分班级:姓名:一、选择题(每小题3分,共30分)1.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠BAC=25°,则∠ADE=()A.20°B.25°C.30°D.35°3.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2B.3C.4D.54.如图,在Rt△ABC中,∠ACB=90°
2、,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C.90°D.150°5.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)6.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30°B.
3、45°C.60°D.90°7.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是()A.4B.C.D.8.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,-)B.(﹣1,-)或(﹣2,0)C.(-,﹣1)或(0,﹣2)D.(-,﹣1)9.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图①.在图②中,将骰子向右翻滚,然后在桌面上按逆时
4、针方向旋转,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成100次变换后,骰子朝上一面的点数是()A.6B.5C.3D.210.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)二、填空题(每小题3分,共15分)11
5、.在平面镜里看到背后墙上电子钟示数实际时间是:________.12.点E(a,-5)与点F(-2,b)关于y轴对称,则a=_________,b=________.13.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到AB'C'的位置,使CC'//AB,则∠BAB'=________________.14.如图所示,在直角坐标系中,△A′B′C′是由△ABC绕点P旋转一定的角度而得,其中A(1,4),B(0,2),C(3,0),则旋转中心点P的坐标是______.15.如图,一段抛物
6、线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=________.三、解答题(本大题8个小题,共75分)16.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,∠F=60°,求:(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.17.已知正方形ABCD和正方形AEFG有一个公
7、共点A,点G、E分别在线段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由.18.如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出将△ABC绕原点O按顺时钟旋转180°所得的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.(不写解答过程,直接写出结果)19.D为等腰Rt△ABC斜边AB的中点,DM⊥D
8、N,DM,DN分别交BC,CA于点E,F.(1)当∠MDN绕点D转动时,求证:DE=DF.(2)若AB=2,求四边形DECF的面积.20.如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)
此文档下载收益归作者所有